메뉴 건너뛰기




Volumn 126, Issue 1, 2005, Pages 1-21

Minimum-volume enclosing ellipsoids and core sets

Author keywords

Approximation algorithms; Core sets; L wner ellipsoids

Indexed keywords

COMPUTATIONAL GEOMETRY;

EID: 23744479417     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-005-2653-6     Document Type: Article
Times cited : (218)

References (38)
  • 1
    • 1542276930 scopus 로고
    • A geometric approach to optimal design theory
    • SILVEY, S. and TITTERINGTON, D., A Geometric Approach to Optimal Design Theory, Biometrika, Vol. 62, pp. 21-32, 1973.
    • (1973) Biometrika , vol.62 , pp. 21-32
    • Silvey, S.1    Titterington, D.2
  • 2
    • 0016689441 scopus 로고
    • Optimal design: Some geometrical aspects of D-optimality
    • TITTERINGTON, D. M., Optimal Design: Some Geometrical Aspects of D-Optimality, Biometrika, Vol. 62, pp. 313-320, 1975.
    • (1975) Biometrika , vol.62 , pp. 313-320
    • Titterington, D.M.1
  • 3
    • 85030869395 scopus 로고
    • Smallest enclosing disks (balls and ellipsoids)
    • Edited by H. Maurer, Lecture Notes in Computer Science, Springer, Berlin, Germany
    • WELZL, E., Smallest Enclosing Disks (Balls and Ellipsoids), New Results and New Trends in Computer Science, Edited by H. Maurer, Lecture Notes in Computer Science, Springer, Berlin, Germany, Vol. 555, pp. 359-370, 1991.
    • (1991) New Results and New Trends in Computer Science , vol.555 , pp. 359-370
    • Welzl, E.1
  • 4
    • 0027202916 scopus 로고
    • On linear time deterministic algorithms for optimization problems in fixed dimension
    • CHAZELLE, B., and MATOUŠEK, J., On Linear Time Deterministic Algorithms for Optimization Problems in Fixed Dimension, ACM-SIAM Symposium on Discrete Algorithms, pp. 281-290, 1993.
    • (1993) ACM-SIAM Symposium on Discrete Algorithms , pp. 281-290
    • Chazelle, B.1    Matoušek, J.2
  • 5
    • 0002755657 scopus 로고    scopus 로고
    • Efficiently approximating the minimum-volume bounding box of a point set in three dimensions
    • BAREQUET, G., and HAR-PELED, S., Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions, Journal of Algorithms, Vol. 38, pp. 91-109, 2001.
    • (2001) Journal of Algorithms , vol.38 , pp. 91-109
    • Barequet, G.1    Har-Peled, S.2
  • 15
    • 0002940114 scopus 로고
    • Extremum problems with inequalities as subsidiary conditions
    • Wiley, Interscience, New York, NY
    • JOHN, F., Extremum Problems with Inequalities as Subsidiary Conditions, Studies and Essays in Honor of R. Courant, Wiley, Interscience, New York, NY, pp. 187-204, 1948
    • (1948) Studies and Essays in Honor of R. Courant , pp. 187-204
    • John, F.1
  • 16
    • 0041094080 scopus 로고
    • Edited by J. Moser, Birkhäuser, Boston, Massachusetts
    • (see also Fritz John, Collected Papers, Edited by J. Moser, Birkhäuser, Boston, Massachusetts, Vol. 2, pp. 543-560, 1985).
    • (1985) Collected Papers , vol.2 , pp. 543-560
    • John, F.1
  • 17
    • 0001409590 scopus 로고
    • Estimation of correlation coefficients by ellipsoidal trimming
    • TITTERINGTON, D. M., Estimation of Correlation Coefficients by Ellipsoidal Trimming, Applied Statistics, Vol. 27, pp. 227-234, 1978.
    • (1978) Applied Statistics , vol.27 , pp. 227-234
    • Titterington, D.M.1
  • 18
    • 0030134435 scopus 로고    scopus 로고
    • Rounding of polytopes in the real number model of computation
    • KHACHIYAN, L. G., Rounding of Polytopes in the Real Number Model of Computation, Mathematics of Operations Research, Vol. 21, pp. 307-320, 1996.
    • (1996) Mathematics of Operations Research , vol.21 , pp. 307-320
    • Khachiyan, L.G.1
  • 20
    • 8344259908 scopus 로고    scopus 로고
    • Computation of minimum-volume covering ellipsoids
    • to appear
    • SUN, P., and FREUND, R. M., Computation of Minimum-Volume Covering Ellipsoids, Operations Research, 2004 (to appear).
    • (2004) Operations Research
    • Sun, P.1    Freund, R.M.2
  • 22
    • 0027649795 scopus 로고
    • A randomization scheme for speeding up algorithms for linear and convex quadratic programming problems with a high constraints-to-variables ratio
    • ADLER, I., and SHAMIR, R., A Randomization Scheme for Speeding Up Algorithms for Linear and Convex Quadratic Programming Problems with a High Constraints-to-Variables Ratio, Mathematical Programming, Vol. 61, pp. 39-52, 1993.
    • (1993) Mathematical Programming , vol.61 , pp. 39-52
    • Adler, I.1    Shamir, R.2
  • 24
    • 0042778011 scopus 로고
    • On the complexity of approximating the maximal inscribed ellipsoid for a polytope
    • KHACHIYAN, L. G., and TODD, M. J., On the Complexity of Approximating the Maximal Inscribed Ellipsoid for a Polytope, Mathematical Programming, Vol. 61, pp. 137-159, 1993.
    • (1993) Mathematical Programming , vol.61 , pp. 137-159
    • Khachiyan, L.G.1    Todd, M.J.2
  • 25
    • 0033295103 scopus 로고    scopus 로고
    • On self-concordant convex-concave functions
    • NEMIROVSKII, A. S., On Self-Concordant Convex-Concave Functions, Optimization Methods and Software, Vols. 11/12, pp. 303-384, 1999.
    • (1999) Optimization Methods and Software , vol.11-12 , pp. 303-384
    • Nemirovskii, A.S.1
  • 26
    • 0038664652 scopus 로고    scopus 로고
    • An interior-point algorithm for the maximum-volume ellipsoid problem
    • Department of Computational and Applied Mathematics, Rice University, Houston, Texas
    • ZHANG, Y., An Interior-Point Algorithm for the Maximum-Volume Ellipsoid Problem, Technical Report TR98-15, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 1998.
    • (1998) Technical Report , vol.TR98-15
    • Zhang, Y.1
  • 27
    • 0037797240 scopus 로고    scopus 로고
    • Improved complexity for maximum-volume inscribed ellipsoids
    • ANSTREICHER, K. M., Improved Complexity for Maximum-Volume Inscribed Ellipsoids, SIAM Journal on Optimization, Vol. 13, pp. 309-320, 2003.
    • (2003) SIAM Journal on Optimization , vol.13 , pp. 309-320
    • Anstreicher, K.M.1
  • 28
    • 1542291028 scopus 로고    scopus 로고
    • On numerical solution of the maximum-volume ellipsoid problem
    • ZHANG, Y., and GAO, L., On Numerical Solution of the Maximum-Volume Ellipsoid Problem, SIAM Journal on Optimization, Vol. 14, pp. 53-76, 2003.
    • (2003) SIAM Journal on Optimization , vol.14 , pp. 53-76
    • Zhang, Y.1    Gao, L.2
  • 30
    • 0032595819 scopus 로고    scopus 로고
    • Primal-dual path-following algorithm for determinant maximization problems with linear matrix inequalities
    • TOH, K. C., Primal-Dual Path-Following Algorithm for Determinant Maximization Problems with Linear Matrix Inequalities, Computational Optimization and Applications, Vol. 14, pp. 309-330, 1999.
    • (1999) Computational Optimization and Applications , vol.14 , pp. 309-330
    • Toh, K.C.1
  • 36
    • 51249167675 scopus 로고
    • Approximating the volume of convex bodies
    • BETKE, U., and HENK, M., Approximating the Volume of Convex Bodies, Discrete Computational Geometry, Vol. 10, pp. 15-21, 1993.
    • (1993) Discrete Computational Geometry , vol.10 , pp. 15-21
    • Betke, U.1    Henk, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.