-
1
-
-
0031071780
-
On Vaidya'a volumetric cutting plane method for convex programming
-
K.M. ANSTREICHER, On Vaidya'a volumetric cutting plane method for convex programming, Math. Oper. Res., 22 (1997), pp. 63-89.
-
(1997)
Math. Oper. Res.
, vol.22
, pp. 63-89
-
-
Anstreicher, K.M.1
-
2
-
-
0033076321
-
Ellipsoidal approximations of convex sets based on the volumetric barrier
-
K.M. ANSTREICHER, Ellipsoidal approximations of convex sets based on the volumetric barrier, Math. Oper. Res., 24 (1999), pp. 193-203.
-
(1999)
Math. Oper. Res.
, vol.24
, pp. 193-203
-
-
Anstreicher, K.M.1
-
3
-
-
0003957164
-
-
Springer-Verlag, Berlin
-
M. GRÖTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988.
-
(1988)
Geometric Algorithms and Combinatorial Optimization
-
-
Grötschel, M.1
Lovász, L.2
Schrijver, A.3
-
4
-
-
0003606513
-
-
Kluwer Academic Publishers, Dordrecht, The Netherlands
-
D. DEN HERTOG, Interior Point Approach to Linear, Quadratic, and Convex Programming- Algorithms and Complexity, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
-
(1994)
Interior Point Approach to Linear, Quadratic, and Convex Programming- Algorithms and Complexity
-
-
Den Hertog, D.1
-
6
-
-
0002940114
-
-
Presented to R. Courant on His 60th Birthday, January 8, Wiley Interscience, New York
-
F. JOHN, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays, Presented to R. Courant on His 60th Birthday, January 8, 1948, Wiley Interscience, New York, pp. 187-204.
-
(1948)
Extremum Problems with Inequalities as Subsidiary Conditions, in Studies and Essays
, pp. 187-204
-
-
John, F.1
-
8
-
-
0030134435
-
Hounding of polytopes in the real number model of computation
-
L.G. KHACHIYAN, Hounding of polytopes in the real number model of computation, Math. Oper. Res., 21 (1996), pp. 307-320.
-
(1996)
Math. Oper. Res.
, vol.21
, pp. 307-320
-
-
Khachiyan, L.G.1
-
9
-
-
0042778011
-
On the complexity of approximating the maximal volume inscribed ellipsoid for a polytope
-
L.G. KHACHIYAN AND M.J. TODD, On the complexity of approximating the maximal volume inscribed ellipsoid for a polytope, Math. Programming, 61 (1993), pp. 137-159.
-
(1993)
Math. Programming
, vol.61
, pp. 137-159
-
-
Khachiyan, L.G.1
Todd, M.J.2
-
10
-
-
0020845921
-
Integer programming with a fixed number of variables
-
H.W. LENSTRA, JR., Integer programming with a fixed number of variables, Math. Oper. Res., 8 (1983), pp. 538-548.
-
(1983)
Math. Oper. Res.
, vol.8
, pp. 538-548
-
-
Lenstra H.W., Jr.1
-
11
-
-
0038664653
-
-
Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
-
A. NEMIROVSKII, On Self-Concordant Concave-Convex functions, Faculty of Industrial Engineering and Management, Technion, Haifa, Israel, 1997.
-
(1997)
On Self-Concordant Concave-Convex Functions
-
-
Nemirovskii, A.1
-
12
-
-
0003254248
-
Interior-point polynomial algorithms in convex programming
-
Siam, Philadelphia
-
Y. NESTEROV AND A. NEMIROVSKII, Interior-Point Polynomial Algorithms in Convex Programming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.
-
(1994)
Siam Stud. Appl. Math.
, vol.13
-
-
Nesterov, Y.1
Nemirovskii, A.2
-
14
-
-
0000574381
-
The method of inscribed ellipsoids
-
S.P. TARASOV, L.G. KHACHIYAN, AND I.I. ERLICH, The method of inscribed ellipsoids, Soviet Math. Dokl., 27 (1988), pp. 226-230.
-
(1988)
Soviet Math. Dokl.
, vol.27
, pp. 226-230
-
-
Tarasov, S.P.1
Khachiyan, L.G.2
Erlich, I.I.3
-
15
-
-
0001536423
-
A new algorithm for minimizing convex functions over convex sets
-
P.M. VAIDYA, A new algorithm for minimizing convex functions over convex sets, Math. Programming, 73 (1996), pp. 291-341.
-
(1996)
Math. Programming
, vol.73
, pp. 291-341
-
-
Vaidya, P.M.1
-
16
-
-
0038664652
-
-
Technical report TR98-15, Center for Computational and Applied Mathematics, Rice University, Houston, TX
-
Y. ZHANG, An Interior-Point Algorithm for the Maximum-Volume Ellipsoid Problem, Technical report TR98-15, Center for Computational and Applied Mathematics, Rice University, Houston, TX, 1998.
-
(1998)
An Interior-Point Algorithm for the Maximum-Volume Ellipsoid Problem
-
-
Zhang, Y.1
-
17
-
-
0037988225
-
-
Technical report TR01-15, Center for Computational and Applied Mathematics, Rice University, Houston, TX
-
Y. ZHANC AND L. GAO, On Numerical Solution of the Maximum Volume Ellipsoid Problem, Technical report TR01-15, Center for Computational and Applied Mathematics, Rice University, Houston, TX, 2001.
-
(2001)
On Numerical Solution of the Maximum Volume Ellipsoid Problem
-
-
Zhanc, Y.1
Gao, L.2
|