-
1
-
-
0020203379
-
On the existence of optimal quantizer
-
Abaya, E., Wise, G. (1992). On the existence of optimal quantizer. IEEE Trans. Inf. Theory 38(2):937-946.
-
(1992)
IEEE Trans. Inf. Theory
, vol.38
, Issue.2
, pp. 937-946
-
-
Abaya, E.1
Wise, G.2
-
2
-
-
2342581211
-
A quantization algorithm for solving discrete time multidimensional optimal stopping problems
-
Bally, V., Pagès, G. (2003). A quantization algorithm for solving discrete time multidimensional optimal stopping problems. Bernoulli 9(6): 1003-1049.
-
(2003)
Bernoulli
, vol.9
, Issue.6
, pp. 1003-1049
-
-
Bally, V.1
Pagès, G.2
-
3
-
-
0002262588
-
A stochastic quantization method for nonlinear problems
-
Bally, V., Pagès, G., Printems, J. (2001). A stochastic quantization method for nonlinear problems. Monte Carlo Methods Appl. 7(1):21-34.
-
(2001)
Monte Carlo Methods Appl.
, vol.7
, Issue.1
, pp. 21-34
-
-
Bally, V.1
Pagès, G.2
Printems, J.3
-
4
-
-
84862342055
-
A quantization tree method for pricing and hedging multidimensional American options
-
Pre-print LPMA-753, Univ. Paris 6, to appear in
-
Bally, V., Pagès, G, Printems, J. (2002). A quantization tree method for pricing and hedging multidimensional American options. Pre-print LPMA-753, Univ. Paris 6, to appear in Mathematical Finance.
-
(2002)
Mathematical Finance
-
-
Bally, V.1
Pagès, G.2
Printems, J.3
-
5
-
-
33751512263
-
Spectra of quantized signals
-
Benett, N. R. (1948). Spectra of quantized signals. Bell Syst. Tech. J. 27:446-472.
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 446-472
-
-
Benett, N.R.1
-
6
-
-
0020098423
-
Multidimensional asymptotic quantization theory with rth power distortion measures
-
Bucklew, J., Wise, G. (1982). Multidimensional asymptotic quantization theory with rth power distortion measures. IEEE Trans. Inf. Theory, Special issue on Quantization 28(2):239-247.
-
(1982)
IEEE Trans. Inf. Theory, Special Issue on Quantization
, vol.28
, Issue.2
, pp. 239-247
-
-
Bucklew, J.1
Wise, G.2
-
7
-
-
2342451006
-
A geometrical approach to uniqueness of a locally optimal quantizer
-
LPMA, Univ. Paris 6 (France)
-
Cohort, P. (1997). A Geometrical Approach to Uniqueness of a Locally Optimal Quantizer. Technical Report, LPMA, Univ. Paris 6 (France).
-
(1997)
Technical Report
-
-
Cohort, P.1
-
8
-
-
21344436353
-
On the a.s. convergence of the Kohonen algorithm with a general neighborhood function
-
Fort, J. C., Pagès, G. (1995). On the a.s. convergence of the Kohonen algorithm with a general neighborhood function. Ann. Appl. Prob. 5(4): 1177-1216.
-
(1995)
Ann. Appl. Prob.
, vol.5
, Issue.4
, pp. 1177-1216
-
-
Fort, J.C.1
Pagès, G.2
-
9
-
-
0037106179
-
Asymptotics of optimal quantizers for some scalar distributions
-
Fort, J. C., Pagès, G. (2002). Asymptotics of optimal quantizers for some scalar distributions. J. Comput. Appl. Math. 146:253-275.
-
(2002)
J. Comput. Appl. Math.
, vol.146
, pp. 253-275
-
-
Fort, J.C.1
Pagès, G.2
-
10
-
-
0018491303
-
Asymptotically optimal block quantization
-
Gersho, A. (1979). Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4):373-380.
-
(1979)
IEEE Trans. Inf. Theory
, vol.25
, Issue.4
, pp. 373-380
-
-
Gersho, A.1
-
13
-
-
0003489629
-
-
Lecture Notes In Mathematics, 1730, Berlin: Springer Verlag
-
Graf, S., Luschgy, H. (2000). Foundations of Quantization for Probability Distributions. Lecture Notes In Mathematics, 1730, Berlin: Springer Verlag, 230 pp.
-
(2000)
Foundations of Quantization for Probability Distributions
-
-
Graf, S.1
Luschgy, H.2
-
14
-
-
0020098297
-
Exponential rate of convergence for the Lloyd's method I
-
Kieffer, J. (1982). Exponential rate of convergence for the Lloyd's method I. IEEE Trans. Inf. Theory Special Issue Quantization 28(2):205-210.
-
(1982)
IEEE Trans. Inf. Theory Special Issue Quantization
, vol.28
, Issue.2
, pp. 205-210
-
-
Kieffer, J.1
-
15
-
-
0010408874
-
On the critical points of the 1-dimensional competitive learning vector quantization algorithm
-
De Facto editor, Brussels, Belgium
-
Lamberton, D., Pagès, G. (1996). On the critical points of the 1-dimensional competitive learning vector quantization algorithm. In: De Facto editor. Proceedings of the ESANN'96, Brussels, Belgium.
-
(1996)
Proceedings of the ESANN'96
-
-
Lamberton, D.1
Pagès, G.2
-
16
-
-
0016496956
-
Nonlinear segmented function approximation and analysis of line patterns
-
McClure, D. E. (1975). Nonlinear segmented function approximation and analysis of line patterns. Quart. Appl. Math. 33:1-37.
-
(1975)
Quart. Appl. Math.
, vol.33
, pp. 1-37
-
-
McClure, D.E.1
-
17
-
-
0032498777
-
A space vector quantization method for numerical integration
-
Pagès, G. (1997). A space vector quantization method for numerical integration. J. Comput. Appl. Math. 89:1-38.
-
(1997)
J. Comput. Appl. Math.
, vol.89
, pp. 1-38
-
-
Pagès, G.1
-
18
-
-
2342563487
-
Optimal quadratic quantization for numerics: The Gaussian case
-
Pagès, G., Printems, J. (2003). Optimal quadratic quantization for numerics: The Gaussian case. Monte Carlo Methods Appl. 9(2): 135-166.
-
(2003)
Monte Carlo Methods Appl.
, vol.9
, Issue.2
, pp. 135-166
-
-
Pagès, G.1
Printems, J.2
-
19
-
-
33645685536
-
Optimal quantization methods and applications to numerical problems in finance
-
Pre-print LPMA-813, Univ. Paris 6/7 (France), to appear in, Birkhauser
-
Pagès, G., Pham, H., Printems, J. (2003). Optimal quantization methods and applications to numerical problems in finance. Pre-print LPMA-813, Univ. Paris 6/7 (France), to appear in Handbook of Numerical Methods in Finance, Birkhauser.
-
(2003)
Handbook of Numerical Methods in Finance
-
-
Pagès, G.1
Pham, H.2
Printems, J.3
-
20
-
-
0034815902
-
The enhanced LBG algorithm
-
Patane, G., Russo, M. (2001). The enhanced LBG algorithm. Neural Networks 14(9).
-
(2001)
Neural Networks
, vol.14
, Issue.9
-
-
Patane, G.1
Russo, M.2
-
22
-
-
0020101637
-
Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions
-
Trushkin, A. (1982). Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions. IEEE Trans. Inf. Theory, Special Issue on Quantization 28(2): 187-198.
-
(1982)
IEEE Trans. Inf. Theory, Special Issue on Quantization
, vol.28
, Issue.2
, pp. 187-198
-
-
Trushkin, A.1
-
23
-
-
0020100081
-
Asymptotic quantization error of continuous signals and the quantization dimension
-
Zador, P. (1982). Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inf. Theory, Special Issue on Quantization 28(2):139-148.
-
(1982)
IEEE Trans. Inf. Theory, Special Issue on Quantization
, vol.28
, Issue.2
, pp. 139-148
-
-
Zador, P.1
|