-
1
-
-
0020203379
-
On the existence of optimal quantizer
-
[1] E. Abaya, G. Wise, On the existence of optimal quantizer, IEEE Inform. Theory 38 (1992) 937-946.
-
(1992)
IEEE Inform. Theory
, vol.38
, pp. 937-946
-
-
Abaya, E.1
Wise, G.2
-
5
-
-
0040591548
-
Suites à discrépance faible et intégration numérique
-
Bouleau, Talay (Eds.), IKRIA
-
[5] J.-P. Borel, G. Pagès, Y.J. Xiao, Suites à discrépance faible et intégration numérique, in: Bouleau, Talay (Eds.), Probabilités Numériques, Collection didactique, IKRIA, 1992, pp. 7-22.
-
(1992)
Probabilités Numériques, Collection Didactique
, pp. 7-22
-
-
Borel, J.-P.1
Pagès, G.2
Xiao, Y.J.3
-
6
-
-
0001470821
-
Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli
-
[6] C. Bouton, G. Pagès, Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli, Stochastic Process. Appl. 47 (1993) 249-274.
-
(1993)
Stochastic Process. Appl.
, vol.47
, pp. 249-274
-
-
Bouton, C.1
Pagès, G.2
-
7
-
-
0031488780
-
About the multidimensional competitive learning vector quantization algorithm with constant gain
-
[7] C. Bouton, G. Pagès, About the multidimensional competitive learning vector quantization algorithm with constant gain, Ann. Appl. Probab. 7 (1997), 679-710.
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 679-710
-
-
Bouton, C.1
Pagès, G.2
-
8
-
-
0001052668
-
Les algorithmes stochastiques contournent-ils les pièges?
-
[8] O. Brandière, M. Duflo, Les algorithmes stochastiques contournent-ils les pièges?, Les Annales de l'I.H.P. 32 (1995) 395-477.
-
(1995)
Les Annales de L'I.H.P.
, vol.32
, pp. 395-477
-
-
Brandière, O.1
Duflo, M.2
-
9
-
-
0020098423
-
Multidimensional asymptotic quantization theory with rth power distortion measures
-
[9] J. Bucklew, G. Wise, Multidimensional asymptotic quantization theory with rth power distortion measures, IEEE Inform. Theory, Special issue on Quantization 28 (1982) 239-247.
-
(1982)
IEEE Inform. Theory, Special Issue on Quantization
, vol.28
, pp. 239-247
-
-
Bucklew, J.1
Wise, G.2
-
11
-
-
0002098719
-
Etude d'un algorithme d'auto-organisation
-
[11] M. Cottrell, J.C. Fort, Etude d'un algorithme d'auto-organisation. Ann. Inst. H. Poincaré 23 (1986) 1-20.
-
(1986)
Ann. Inst. H. Poincaré
, vol.23
, pp. 1-20
-
-
Cottrell, M.1
Fort, J.C.2
-
12
-
-
0004169430
-
-
Springer, New York, l'algorithme
-
[12] M. Duflo, Random Iterative Models, Springer, New York, 1997, l'algorithme.
-
(1997)
Random Iterative Models
-
-
Duflo, M.1
-
13
-
-
21344436353
-
About the a.s. convergence of the Kohonen algorithm with a generalized neighborhood function
-
[13] J.C. Fort, G. Pagès, About the a.s. convergence of the Kohonen algorithm with a generalized neighborhood function. Ann. Appl. Probab. 5(4) (1995) 1177-1216.
-
(1995)
Ann. Appl. Probab.
, vol.5
, Issue.4
, pp. 1177-1216
-
-
Fort, J.C.1
Pagès, G.2
-
14
-
-
0000258953
-
Convergence of stochastic algorithms: From the Kushner & Clark theorem to the Lyapounov functional method
-
[14] J.C. Fort, G. Pagès, Convergence of stochastic algorithms: from the Kushner & Clark theorem to the Lyapounov functional method, Adv. in Appl. Probab. 28 (1996) 1072-1094.
-
(1996)
Adv. in Appl. Probab.
, vol.28
, pp. 1072-1094
-
-
Fort, J.C.1
Pagès, G.2
-
15
-
-
0018491303
-
Asymptotically optimal block quantization
-
[15] A. Gersho, Asymptotically optimal block quantization, IEEE Inform. Theory 25 (1979).
-
(1979)
IEEE Inform. Theory
, vol.25
-
-
Gersho, A.1
-
17
-
-
0020098297
-
Exponential rate of convergence for the Lloyd's method I
-
[17] J. Kiefer, Exponential rate of convergence for the Lloyd's method I, IEEE Inform. Theory, Special issue on Quantization, 28 (1982) 205-210.
-
(1982)
IEEE Inform. Theory, Special Issue on Quantization
, vol.28
, pp. 205-210
-
-
Kiefer, J.1
-
19
-
-
0003023542
-
Self-organizing maps: Optimization approaches
-
T. Kohonen et al. (Eds.), Elsevier, Amsterdam
-
[19] T. Kohonen, Self-organizing maps: optimization approaches, in: T. Kohonen et al. (Eds.), Artificial Neural Networks, Elsevier, Amsterdam, 1991, pp. 981-990.
-
(1991)
Artificial Neural Networks
, pp. 981-990
-
-
Kohonen, T.1
-
21
-
-
0003099730
-
Stochastic approximation for constrained and unconstrained systems
-
Springer, Berlin
-
[21] H. Kushner, D. Clark, Stochastic Approximation for Constrained and Unconstrained Systems, Applied Math. Science Series, vol 26, Springer, Berlin, 1978.
-
(1978)
Applied Math. Science Series
, vol.26
-
-
Kushner, H.1
Clark, D.2
-
22
-
-
0010408874
-
On the critical points of the 1-dimensional competitive learning vector quantization algorithm
-
Bruges, Belgium
-
[22] D. Lamberton, G. Pagès, On the critical points of the 1-dimensional competitive learning vector quantization algorithm, in: Proc. ESANN'96, Bruges, Belgium, 1996.
-
(1996)
Proc. ESANN'96
-
-
Lamberton, D.1
Pagès, G.2
-
23
-
-
0010787447
-
Familles de suites à discrépance faible obtenues par itérations de transformations de [0, 1]
-
Série I
-
[23] B. Lapeyre, G. Pagès, Familles de suites à discrépance faible obtenues par itérations de transformations de [0, 1]. CRAS 308, Série I, 1989, pp. 507-509.
-
(1989)
CRAS
, vol.308
, pp. 507-509
-
-
Lapeyre, B.1
Pagès, G.2
-
24
-
-
84972811693
-
Sequences with low discrepancy: Generalization and application to Robbins-Monro algorithm
-
[24] B. Lapeyre, G. Pagès, K. Sab, Sequences with low discrepancy: generalization and application to Robbins-Monro algorithm, Statistics 21 (1990) 251-272.
-
(1990)
Statistics
, vol.21
, pp. 251-272
-
-
Lapeyre, B.1
Pagès, G.2
Sab, K.3
-
25
-
-
0039998345
-
Convergence of stochastic-approximation procedures in the case of a regression equation with several roots
-
[25] V. Lazarev, Convergence of stochastic-approximation procedures in the case of a regression equation with several roots. Translated from Problemy Pederachi Informatsii, 28, (1992).
-
(1992)
Translated from Problemy Pederachi Informatsii
, vol.28
-
-
Lazarev, V.1
-
27
-
-
38249010505
-
Van der Corput sequences, Kakutani transform and one-dimensional numerical integration
-
[27] G. Pagès, Van der Corput sequences, Kakutani transform and one-dimensional numerical integration, J. Comput. Appl. Math. 44 (1992) 21-39.
-
(1992)
J. Comput. Appl. Math.
, vol.44
, pp. 21-39
-
-
Pagès, G.1
-
28
-
-
0039264953
-
Voronoï tessellation, space quantization algorithms and numerical integration
-
M. Verleysen (Ed.), Bruxelles, Editions Quorum, Bruxelles
-
[28] G. Pagès, Voronoï tessellation, space quantization algorithms and numerical integration, in: M. Verleysen (Ed.), Proc. ESANN'93, Bruxelles, Editions Quorum, Bruxelles, 1993, pp. 221-228.
-
(1993)
Proc. ESANN'93
, pp. 221-228
-
-
Pagès, G.1
-
32
-
-
0022683355
-
Global convergence and empirical consistency of the generalized Lloyd algorithm
-
[32] A. Trushkin, Global convergence and empirical consistency of the generalized Lloyd algorithm, IEEE Inform. Theory 32 (1986) 148-155.
-
(1986)
IEEE Inform. Theory
, vol.32
, pp. 148-155
-
-
Trushkin, A.1
-
33
-
-
0020101637
-
Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions
-
[33] A. Trushkin, Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions, IEEE Inform. Theory, Special issue on Quantization 28 (1982) 187-198.
-
(1982)
IEEE Inform. Theory, Special Issue on Quantization
, vol.28
, pp. 187-198
-
-
Trushkin, A.1
-
34
-
-
0027878665
-
On the design of an optimal quantizer
-
[34] A. Trushkin, On the design of an optimal quantizer, IEEE Inform. Theory 39 (1993) 1180-1194.
-
(1993)
IEEE Inform. Theory
, vol.39
, pp. 1180-1194
-
-
Trushkin, A.1
-
35
-
-
85033892649
-
Les principaux modèles de réseaux de neurones artificiels
-
E. de Bodt, E.F. Henrion (Eds.), D. Facto, Bruxelles
-
[35] M. Verleysen, Les principaux modèles de réseaux de neurones artificiels, in: E. de Bodt, E.F. Henrion (Eds.), Les Réseaux de Neurones en Finance: Conception et Applications, 1995, D. Facto, Bruxelles.
-
(1995)
Les Réseaux de Neurones en Finance: Conception et Applications
-
-
Verleysen, M.1
-
36
-
-
0020100081
-
Asymptotic quantization error of continuous signals and the quantization dimension
-
[36] P. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Inform. Theory, Special issue on Quantization 28 (1982) pp. 139-148.
-
(1982)
IEEE Inform. Theory, Special Issue on Quantization
, vol.28
, pp. 139-148
-
-
Zador, P.1
|