메뉴 건너뛰기




Volumn 46, Issue 2, 2003, Pages 215-222

Prime divisors of sparse integers

Author keywords

exponential sums; prime divisors; sparse integers

Indexed keywords


EID: 2342420875     PISSN: 00315303     EISSN: 15882829     Source Type: Journal    
DOI: 10.1023/A:1025996312037     Document Type: Article
Times cited : (10)

References (28)
  • 2
    • 0003262513 scopus 로고
    • Density of prime divisors of linear recurrences
    • Amer. Math. Soc., Providence, RI
    • C. Ballot, Density of prime divisors of linear recurrences, Memoirs Amer. Math. Soc., 115, Amer. Math. Soc., Providence, RI, 1995.
    • (1995) Memoirs Amer. Math. Soc.
    • Ballot, C.1
  • 3
    • 0032441756 scopus 로고    scopus 로고
    • Shifted primes without large prime factors
    • R. C. Baker and G. Harman, Shifted primes without large prime factors, Acta Arith. 83 (1998), 331–361.
    • (1998) Acta Arith. , vol.83 , pp. 331-361
    • Baker, R.C.1    Harman, G.2
  • 5
    • 0030459062 scopus 로고    scopus 로고
    • Méthodes des crible et fonctions sommes des chiffres
    • E. Fouvry and C. Mauduit, Méthodes des crible et fonctions sommes des chiffres, Acta Arith. 77 (1996), 339–351.
    • (1996) Acta Arith. , vol.77 , pp. 339-351
    • Fouvry, E.1    Mauduit, C.2
  • 6
    • 0030500245 scopus 로고    scopus 로고
    • Sommes des chiffres et nombres presque premiers
    • E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, Math. Ann. 305 (1996), 571–599. DOI: 10.1007/BF01444238
    • (1996) Math. Ann. , vol.305 , pp. 571-599
    • Fouvry, E.1    Mauduit, C.2
  • 7
    • 0013506173 scopus 로고
    • Théorème de Brun–Titchmarsh: Application au théorème de Fermat
    • E. Fouvry, Théorème de Brun–Titchmarsh: Application au théorème de Fermat, Invent. Math. 79 (1985), 383–407. DOI: 10.1007/BF01388980
    • (1985) Invent. Math. , vol.79 , pp. 383-407
    • Fouvry, E.1
  • 8
    • 0039938269 scopus 로고
    • Ñber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod p ist
    • H. Hasse, Ñber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 166 (1966), 19–23. DOI: 10.1007/BF01361432
    • (1966) Math. Ann. , vol.166 , pp. 19-23
    • Hasse, H.1
  • 9
    • 0034404750 scopus 로고    scopus 로고
    • th powers, and for Heilbronn's exponential sum
    • th powers, and for Heilbronn's exponential sum, Ouart. J. Math. 51 (2000), 221–235. DOI: 10.1093/qjmath/51.2.221
    • (2000) Ouart. J. Math. , vol.51 , pp. 221-235
    • Heath-Brown, D.R.1    Konyagin, S.V.2
  • 11
    • 0001479544 scopus 로고    scopus 로고
    • Arithmetic properties of integers with missing digits: distribution in residue classes
    • S. Konyagin, Arithmetic properties of integers with missing digits: distribution in residue classes, Periodica Math. Hungar. 42 (2001), 145–162. DOI: 10.1023/A:1015256809636
    • (2001) Periodica Math. Hungar. , vol.42 , pp. 145-162
    • Konyagin, S.1
  • 12
    • 0012898424 scopus 로고    scopus 로고
    • On the number of prime factors of integers characterized by digit properties
    • S. V. Konyagin, C. Mauduit and A. Sárközy, On the number of prime factors of integers characterized by digit properties, Period. Math. Hungarica 40 (2000), 37–52. DOI: 10.1023/A:1004887821978
    • (2000) Period. Math. Hungarica , vol.40 , pp. 37-52
    • Konyagin, S.V.1    Mauduit, C.2    Sárközy, A.3
  • 14
    • 84972582766 scopus 로고
    • The set of primes dividing the Lucas numbers has density 2/3
    • J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449–461.
    • (1985) Pacific J. Math. , vol.118 , pp. 449-461
    • Lagarias, J.C.1
  • 16
    • 85132662387 scopus 로고    scopus 로고
    • Arithmetic properties of members of a binary recurrent sequence
    • to appear
    • F. Luca, Arithmetic properties of members of a binary recurrent sequence, Acta Arith. (to appear).
    • Acta Arith
    • Luca, F.1
  • 17
    • 0030295476 scopus 로고    scopus 로고
    • On the arithmetic structure of sets characterized by sum of digits properties
    • C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties,J. Number Theory 61 (1996), 25–38. DOI: 10.1006/jnth.1996.0134
    • (1996) J. Number Theory , vol.61 , pp. 25-38
    • Mauduit, C.1    Sárközy, A.2
  • 18
    • 0031473636 scopus 로고    scopus 로고
    • On the arithmetic structure of the integers whose sum of digits is fixed
    • C. Mauduit and A. Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 145–173.
    • (1997) Acta Arith. , vol.81 , pp. 145-173
    • Mauduit, C.1    Sárközy, A.2
  • 19
    • 0040581143 scopus 로고    scopus 로고
    • Counting divisors of Lucas numbers
    • P. Moree, Counting divisors of Lucas numbers, Pacific J. Math. 186 (1998), 267–284. DOI: 10.2140/pjm.1998.186.267
    • (1998) Pacific J. Math. , vol.186 , pp. 267-284
    • Moree, P.1
  • 22
    • 0030120226 scopus 로고    scopus 로고
    • * (mod p) and divisors of p- 1
    • * (mod p) and divisors of p- 1, J. Number Theory 57 (1996), 207–222. DOI: 10.1006/jnth.1996.0044
    • (1996) J. Number Theory , vol.57 , pp. 207-222
    • Pappalardi, F.1
  • 23
    • 0041345851 scopus 로고
    • On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, II
    • T. N. Shorey and C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, II, J. London Math. Soc. 23 (1981), 17–23.
    • (1981) J. London Math. Soc. , vol.23 , pp. 17-23
    • Shorey, T.N.1    Stewart, C.L.2
  • 24
    • 0036251988 scopus 로고    scopus 로고
    • On the distribution of the Diffie–Hellman pairs
    • I. E. Shparlinski, On the distribution of the Diffie–Hellman pairs, Finite Fields and Their Appl. 8 (2002), 131–141. DOI: 10.1006/ffta.2000.0321
    • (2002) Finite Fields and Their Appl. , vol.8 , pp. 131-141
    • Shparlinski, I.E.1
  • 26
    • 0000283497 scopus 로고
    • On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers
    • C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, Proc. London Math. Soc. 35 (1977), 425–447.
    • (1977) Proc. London Math. Soc. , vol.35 , pp. 425-447
    • Stewart, C.L.1
  • 27
    • 0002798299 scopus 로고
    • On the representation of an integer in two different bases
    • C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72.
    • (1980) J. Reine Angew. Math. , vol.319 , pp. 63-72
    • Stewart, C.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.