메뉴 건너뛰기




Volumn 35, Issue 5, 2004, Pages 32-43

Structural Optimization by Genetic Algorithm with Degeneration (GA d)

Author keywords

AIC; Damaged genes; Degeneration; Genetic algorithm; Structural evolution; Structural optimization

Indexed keywords

DATA REDUCTION; ERROR ANALYSIS; GENES; GENETIC ALGORITHMS; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 2342418360     PISSN: 08821666     EISSN: None     Source Type: Journal    
DOI: 10.1002/scj.10552     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 0000164013 scopus 로고
    • A method of determining the number of hidden units of three layered neural networks by information criteria
    • in Japanese
    • Kurita T. A method of determining the number of hidden units of three layered neural networks by information criteria. IEICE Trans Inf Syst 1990;J73-D-II: 1872-1878. (in Japanese)
    • (1990) IEICE Trans Inf Syst , vol.J73-D-II , pp. 1872-1878
    • Kurita, T.1
  • 2
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike H. A new look at statistical model identification. IEEE Trans Automatic Control 1974;19:716-723.
    • (1974) IEEE Trans Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen J. A universal prior for integers and estimation by minimum description length. Ann Statistics 1983;11.:416-431.
    • (1983) Ann Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 5
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen J. Stochastic complexity and modeling, Ann Statistics 1986;14:1080-1100.
    • (1986) Ann Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 6
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • Moody JE, Hanson SJ, Lippmann RP (editors). Morgan Kaufmann
    • Moody JE. The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In: Moody JE, Hanson SJ, Lippmann RP (editors). Advances in neural information processing systems 4. Morgan Kaufmann; 1992. p 847-854.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 7
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano H. Designing neural networks using genetic algorithms with graph generation system. Complex System 1990;4:461-476.
    • (1990) Complex System , vol.4 , pp. 461-476
    • Kitano, H.1
  • 8
    • 0011544649 scopus 로고
    • Structural evolution of neural networks by a genetic method
    • in Japanese
    • Nagao T, Agui T, Nagahashi H. Structural evolution of neural networks by a genetic method. IEICE Trans Inf Syst 1992;J75-D-II: 1634-1637. (in Japanese)
    • (1992) IEICE Trans Inf Syst , vol.J75-D-II , pp. 1634-1637
    • Nagao, T.1    Agui, T.2    Nagahashi, H.3
  • 9
    • 0011609862 scopus 로고
    • An automatic GA-based construction of neural networks for motion control of virtual life
    • in Japanese
    • Nagao T, Agui T, Nagahashi H. An automatic GA-based construction of neural networks for motion control of virtual life. IEICE Trans Inf Syst 1995;J78-D-II: 1150-1152. (in Japanese)
    • (1995) IEICE Trans Inf Syst , vol.J78-D-II , pp. 1150-1152
    • Nagao, T.1    Agui, T.2    Nagahashi, H.3
  • 10
    • 0000035815 scopus 로고    scopus 로고
    • A study of the design of feedforward neural networks using genetic algorithms
    • in Japanese
    • Takahashi H, Nakajima M. A study of the design of feedforward neural networks using genetic algorithms. IEICE Trans Inf Syst 1996;J79-D-II:1920-1928. (in Japanese)
    • (1996) IEICE Trans Inf Syst , vol.J79-D-II , pp. 1920-1928
    • Takahashi, H.1    Nakajima, M.2
  • 11
    • 0000566199 scopus 로고    scopus 로고
    • Evolutional design and training algorithm for feedforward neural networks
    • Takahashi H, Nakajima M. Evolutional design and training algorithm for feedforward neural networks. IEICE Trans Inf Syst 1999;E82-D: 1384-1392. Takahashi H, Nakajima M. Evolutional design and training algorithm for feedforward neural networks. IEICE Trans Inf Syst 1999;E82-D: 1384-1392.
    • (1999) IEICE Trans Inf Syst , vol.E82-D , pp. 1384-1392
    • Takahashi, H.1    Nakajima, M.2
  • 12
    • 0000566199 scopus 로고    scopus 로고
    • Evolutional design and training algorithm for feedforward neural networks
    • Takahashi H, Nakajima M. Evolutional design and training algorithm for feedforward neural networks. IEICE Trans Inf Syst 1999;E82-D: 1384-1392. Takahashi H, Nakajima M. Evolutional design and training algorithm for feedforward neural networks. IEICE Trans Inf Syst 1999;E82-D: 1384-1392.
    • (1999) IEICE Trans Inf Syst , vol.E82-D , pp. 1384-1392
    • Takahashi, H.1    Nakajima, M.2
  • 13
    • 0001120001 scopus 로고
    • Method for gradually reducing the number of hidden units in a back-propagation learning algorithm
    • in Japanese
    • Oshino T, Ojima J, Yamamoto S. Method for gradually reducing the number of hidden units in a back-propagation learning algorithm. IEICE Trans Inf Syst 1993;J76-D-II: 1414-1424. (in Japanese)
    • (1993) IEICE Trans Inf Syst , vol.J76-D-II , pp. 1414-1424
    • Oshino, T.1    Ojima, J.2    Yamamoto, S.3
  • 14
    • 0011677187 scopus 로고    scopus 로고
    • A modified backpropagation algorithm that automatically removes redundant hidden units by competition
    • in Japanese
    • Matsunaga Y, Murase K, Yamakawa O, Tanifuji M. A modified backpropagation algorithm that automatically removes redundant hidden units by competition. IEICE Trans Inf Syst 1996;J79-D-II:403-412. (in Japanese)
    • (1996) IEICE Trans Inf Syst , vol.J79-D-II , pp. 403-412
    • Matsunaga, Y.1    Murase, K.2    Yamakawa, O.3    Tanifuji, M.4
  • 15
    • 0032123243 scopus 로고    scopus 로고
    • An efficient MDL-based construction of RBF networks
    • Leonardis A, Bischof H. An efficient MDL-based construction of RBF networks. Neural Networks 1998;11:963-973.
    • (1998) Neural Networks , vol.11 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 16
    • 0011544652 scopus 로고
    • A fuzzy modeling with iterative generation mechanism of fuzzy inference rules
    • in Japanese
    • Araki S, Nomura H, Hayashi I, Wakami N. A fuzzy modeling with iterative generation mechanism of fuzzy inference rules. J Jpn Soc Fuzzy Theory Syst 1992;4:722-732. (in Japanese)
    • (1992) J Jpn Soc Fuzzy Theory Syst , vol.4 , pp. 722-732
    • Araki, S.1    Nomura, H.2    Hayashi, I.3    Wakami, N.4
  • 18
    • 0032136218 scopus 로고    scopus 로고
    • Application of statistical information criteria for optimal fuzzy model construction
    • Yen J, Wang L. Application of statistical information criteria for optimal fuzzy model construction. IEEE Trans Fuzzy Syst 1998;6:362-372.
    • (1998) IEEE Trans Fuzzy Syst , vol.6 , pp. 362-372
    • Yen, J.1    Wang, L.2
  • 19
    • 0011609864 scopus 로고
    • A structural connectionist learning algorithm with forgetting
    • in Japanese
    • Ishikawa M. A structural connectionist learning algorithm with forgetting. J Jpn Soc Artif Intell 1990;5:595-603. (in Japanese)
    • (1990) J Jpn Soc Artif Intell , vol.5 , pp. 595-603
    • Ishikawa, M.1
  • 20
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Networks 1996;9:509-521.
    • (1996) Neural Networks , vol.9 , pp. 509-521
    • Ishikawa, M.1
  • 21
    • 0242706155 scopus 로고    scopus 로고
    • MGGA: Genetic algorithm with mutant genes
    • in Japanese
    • Takahama T, Sakai S, Isomichi Y. MGGA: Genetic algorithm with mutant genes. IEICE Trans Inf Syst 2001;J84-D-I:1297-1306. (in Japanese)
    • (2001) IEICE Trans Inf Syst , vol.J84-D-I , pp. 1297-1306
    • Takahama, T.1    Sakai, S.2    Isomichi, Y.3
  • 23
    • 2342422842 scopus 로고    scopus 로고
    • Discovering optimal structure by genetic algorithm with degeneration
    • SIF-FAI-A002-2. in Japanese
    • Takahama T, Sakai S. Discovering optimal structure by genetic algorithm with degeneration. Jpn Soc Artif Intell Tech Rep, SIF-FAI-A002-2, p 7-12, 2000. (in Japanese)
    • (2000) Jpn Soc Artif Intell Tech Rep , pp. 7-12
    • Takahama, T.1    Sakai, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.