-
3
-
-
0000546270
-
-
(b) R. H. Marchessault, Y. Deslandes. K. Ogawa and P. R. Sundararajan, Can. J. Chem., 1977, 55, 300;
-
(1977)
Can. J. Chem.
, vol.55
, pp. 300
-
-
Marchessault, R.H.1
Deslandes, Y.2
Ogawa, K.3
Sundararajan, P.R.4
-
4
-
-
33845550524
-
-
(c) C. T. Chuah, A. Sarko, Y. Deslandes and R. H. Marchessault, Macromolecules, 1983, 16, 1375.
-
(1983)
Macromolecules
, vol.16
, pp. 1375
-
-
Chuah, C.T.1
Sarko, A.2
Deslandes, Y.3
Marchessault, R.H.4
-
10
-
-
0034821276
-
-
(b) K. Sakurai, M. Mizu and S. Shinkai, Biomacromolecules, 2001, 2, 641;
-
(2001)
Biomacromolecules
, vol.2
, pp. 641
-
-
Sakurai, K.1
Mizu, M.2
Shinkai, S.3
-
11
-
-
0001046693
-
-
(c) T. Kimura, K. Koumoto, K. Sakurai and S. Shinkai, Chem. Lett., 2000, 1243.
-
(2000)
Chem. Lett.
, pp. 1243
-
-
Kimura, T.1
Koumoto, K.2
Sakurai, K.3
Shinkai, S.4
-
12
-
-
39049194646
-
-
K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Chem. Biodiversity, 2004, 1, 916.
-
(2004)
Chem. Biodiversity
, vol.1
, pp. 916
-
-
Miyoshi, K.1
Uezu, K.2
Sakurai, K.3
Shinkai, S.4
-
13
-
-
0034697840
-
-
FRET has been known as a spectroscopic ruler to estimate the precise distance between two fluorophores (donor and acceptor) on the nano-scale because effective energy transfer between two fluorophores occurs only when they exist at a distance of less than 10 nm. For example, see: (a) I. Horsey, W. S. Furey, J. G. Harrison, M. A. Osborne and S. Balasubramanian. Chem Commun., 2000, 1043;
-
(2000)
Chem Commun.
, pp. 1043
-
-
Horsey, I.1
Furey, W.S.2
Harrison, J.G.3
Osborne, M.A.4
Balasubramanian, S.5
-
15
-
-
0037181048
-
-
(c) H. Takakusa, K. Kikuchi, Y. Urano, S. Sakamoto, K. Yamaguchi and T. Nagano, J. Am, Chem, Soc., 2002, 124, 1653.
-
(2002)
J. Am, Chem, Soc.
, vol.124
, pp. 1653
-
-
Takakusa, H.1
Kikuchi, K.2
Urano, Y.3
Sakamoto, S.4
Yamaguchi, K.5
Nagano, T.6
-
16
-
-
33644477542
-
-
note
-
5a,b therefore, we used oligo(dA) with 45 deoxyadenylic acid units to match the curdlan chain length with the curdlan chain length.
-
-
-
-
17
-
-
33644497963
-
-
note
-
We assumed that two curdlan chains take a parallel orientation in the complex. This assumption is basically reasonable because if two curdlan chains take an anti-parallel orientation in the complex. FRET should be observed from both 3′dA-CUR and 5′dA-CUR complexes, so that both systems should give the same fluorescence spectra.
-
-
-
-
18
-
-
33644495613
-
-
note
-
After addition of 10 vol% of Tris-HCl buffer (10.0 mM, pH = 8, 10.0 μl). the resultant aqueous solutions were used for fluorescence measurements, Here, we used F-CUR and 3′ (or 5′) TAMRA-labeled oligo(dA) in H 2 : 1 molar ratio.
-
-
-
-
19
-
-
0037077627
-
-
Optical and electronic properties of gold nanoparticles are useful for the detection of biological polymers, see: (a) D. J. Maxwell. J. R. Taylor and S. Nie. J. Am. Chem. Hot:, 2002, 124, 9606;
-
(2002)
J. Am. Chem. Hot
, vol.124
, pp. 9606
-
-
Maxwell, D.J.1
Taylor, J.R.2
Nie, S.3
-
20
-
-
0032165257
-
-
(b) M. Brust, D. Bethel, C. J. Kiely and D. J. Schiffrin, Langmuir, 1998,14, 5425;
-
(1998)
Langmuir
, vol.14
, pp. 5425
-
-
Brust, M.1
Bethel, D.2
Kiely, C.J.3
Schiffrin, D.J.4
-
21
-
-
0037205907
-
-
(c) F. P. Zamborini. M. C., Leopold. J. F. Hicks. P. J. Kulesza. M. A. Malik and R. W, Murray, J. Am. Chem. Soc., 2002, 124, 8958;
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 8958
-
-
Zamborini, F.P.1
Leopold, M.C.2
Hicks, J.F.3
Kulesza, P.J.4
Malik, M.A.5
Murray, R.W.6
-
22
-
-
4644288203
-
-
(d) T. Niazov, V. Pavlov, Y. Xiao. R. Gill and I. Willner, Nano Lett., 2004, 4, 1683.
-
(2004)
Nano Lett.
, vol.4
, pp. 1683
-
-
Niazov, T.1
Pavlov, V.2
Xiao, Y.3
Gill, R.4
Willner, I.5
-
24
-
-
33644497242
-
-
note
-
The geometry-optimized structures obtained from MOPAC indicate that in a parallel orientation, the adenine residues perfectly fit the groove constructed by two curdlan chains, whereas in an anti-parallel orientation, the adenine residues cannot access the groove due to steric hindrance between the deoxyribose moiety and the curdlan double helix.
-
-
-
-
25
-
-
0005043001
-
-
T. Yanaki, T. Norisue and M. Fujita, Macromolecules, 1980, 13, 1466.
-
(1980)
Macromolecules
, vol.13
, pp. 1466
-
-
Yanaki, T.1
Norisue, T.2
Fujita, M.3
-
26
-
-
3142676634
-
-
M. Mizu, K. Koumoto, T. Anada, T. Matsumoto, M. Numata, S. Shinkai, T. Nagasaki and K. Sakurai, J. Am. Chem, Soc., 2004, 126, 8372.
-
(2004)
J. Am. Chem, Soc.
, vol.126
, pp. 8372
-
-
Mizu, M.1
Koumoto, K.2
Anada, T.3
Matsumoto, T.4
Numata, M.5
Shinkai, S.6
Nagasaki, T.7
Sakurai, K.8
-
27
-
-
0037028349
-
-
T. Kimura. K. Koumoto, M. Mizu. K. Sakurai and S. Shinkai, Chem. Lett., 2002, 1240.
-
(2002)
Chem. Lett.
, pp. 1240
-
-
Kimura, T.1
Koumoto, K.2
Mizu, M.3
Sakurai, K.4
Shinkai, S.5
|