-
1
-
-
0000461055
-
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
-
J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2) 28(112) (1977), 473-486.
-
(1977)
Quart. J. Math. Oxford Ser. (2)
, vol.28
, Issue.112
, pp. 473-486
-
-
Ball, J.M.1
-
2
-
-
0000877190
-
Universality in blow-up for nonlinear heat equations
-
J. Bricmont, A. Kupiainen, Universality in blow-up for nonlinear heat equations. Nonlinearity 7(2) (1994), 539-575.
-
(1994)
Nonlinearity
, vol.7
, Issue.2
, pp. 539-575
-
-
Bricmont, J.1
Kupiainen, A.2
-
3
-
-
0002156334
-
Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view
-
C. Fermanian Kammerer, F. Merle, H. Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Math. Ann. 317(2) (2000), 347-387.
-
(2000)
Math. Ann.
, vol.317
, Issue.2
, pp. 347-387
-
-
Kammerer, C.F.1
Merle, F.2
Zaag, H.3
-
5
-
-
0001336526
-
On the blowup of multidimensional semilinear heat equations
-
S. Filippas, W. X. Liu, On the blowup of multidimensional semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(3) (1993), 313-344.
-
(1993)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.10
, Issue.3
, pp. 313-344
-
-
Filippas, S.1
Liu, W.X.2
-
6
-
-
0007452217
-
Modulation theory for the blowup of vector-valued nonlinear heat equations
-
S. Filippas, F. Merle, Modulation theory for the blowup of vector-valued nonlinear heat equations. J. Differential Equations 116(1) (1995), 119-148.
-
(1995)
J. Differential Equations
, vol.116
, Issue.1
, pp. 119-148
-
-
Filippas, S.1
Merle, F.2
-
7
-
-
0040953629
-
Remarks on nonlinear parabolic equations
-
Amer. Math. Soc., Providence, R.I.
-
A. Friedman, Remarks on nonlinear parabolic equations, Proc. Sympos. Appl. Math., vol. XVII, pp. 3-23, Amer. Math. Soc., Providence, R.I., 1965.
-
(1965)
Proc. Sympos. Appl. Math.
, vol.17
, pp. 3-23
-
-
Friedman, A.1
-
9
-
-
84990616610
-
Asymptotically self-similar blow-up of semilinear heat equations
-
Y. Giga, R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38(3) (1985), 297-319.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, Issue.3
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.V.2
-
10
-
-
0000332576
-
Characterizing blowup using similarity variables
-
Y. Giga, R. V. Kohn, Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1) (1987), 1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, Issue.1
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.V.2
-
11
-
-
84990575181
-
Nondegeneracy of blowup for semilinear heat equations
-
Y. Giga, R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math. 42(6) (1989), 845-884.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.6
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.V.2
-
12
-
-
0000066418
-
Blow-up profiles in one-dimensional, semilinear parabolic problems
-
M. A. Herrero, J. J. L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems. Comm. Partial Differential Equations 17(1-2) (1992), 205-219.
-
(1992)
Comm. Partial Differential Equations
, vol.17
, Issue.1-2
, pp. 205-219
-
-
Herrero, M.A.1
Velázquez, J.J.L.2
-
13
-
-
84972492804
-
Flat blow-up in one-dimensional semilinear heat equations
-
M. A. Herrero, J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations. Differential Integral Equations 5(5) (1992), 973-997.
-
(1992)
Differential Integral Equations
, vol.5
, Issue.5
, pp. 973-997
-
-
Herrero, M.A.1
Velázquez, J.J.L.2
-
16
-
-
84990556280
-
Solution of a nonlinear heat equation with arbitrarily given blow-up points
-
F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. 45(3) (1992), 263-300.
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, Issue.3
, pp. 263-300
-
-
Merle, F.1
-
17
-
-
0034407299
-
A Liouville theorem for vector-valued nonlinear heat equations and applications
-
F. Merle, H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316(1) (2000), 103-137.
-
(2000)
Math. Ann.
, vol.316
, Issue.1
, pp. 103-137
-
-
Merle, F.1
Zaag, H.2
-
19
-
-
0032338170
-
Optimal estimates for blowup rate and behavior for nonlinear heat equations
-
F. Merle, H. Zaag, Optimal Estimates for Blowup Rate and Behavior for Nonlinear Heat Equations. Comm. Pure Appl. Math. 51(2) (1998), 139-196.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.2
, pp. 139-196
-
-
Merle, F.1
Zaag, H.2
-
20
-
-
0032218494
-
Refined uniform estimates at blow-up and applications for nonlinear heat equations
-
F. Merle, H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations. Geom. Funct. Anal. 8(6) (1998), 1043-1085.
-
(1998)
Geom. Funct. Anal.
, vol.8
, Issue.6
, pp. 1043-1085
-
-
Merle, F.1
Zaag, H.2
-
21
-
-
0000428167
-
Higher-dimensional blow up for semilinear parabolic equations
-
J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations. Comm. Partial Differential Equations 17(9-10) (1992), 1567-1596.
-
(1992)
Comm. Partial Differential Equations
, vol.17
, Issue.9-10
, pp. 1567-1596
-
-
Velázquez, J.J.L.1
-
22
-
-
84968503478
-
Classification of singularities for blowing up solutions in higher dimensions
-
J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc. 338(1) (1993), 441-464.
-
(1993)
Trans. Amer. Math. Soc.
, vol.338
, Issue.1
, pp. 441-464
-
-
Velázquez, J.J.L.1
-
23
-
-
0001494169
-
Estimates on the (n - 1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation
-
J. J. L. Velázquez, Estimates on the (n - 1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J. 42(2) (1993), 445-176.
-
(1993)
Indiana Univ. Math. J.
, vol.42
, Issue.2
, pp. 445-1176
-
-
Velázquez, J.J.L.1
-
24
-
-
0035526708
-
A Liouville theorem and blow-up behavior for a vector-valued nonlinear heat equation with no gradient structure
-
H. Zaag, A Liouville theorem and blow-up behavior for a vector-valued nonlinear heat equation with no gradient structure. Comm. Pure Appl. Math. 54 (2001), 107-133.
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 107-133
-
-
Zaag, H.1
-
25
-
-
0000201979
-
Blow-up results for vector-valued nonlinear heat equations with no gradient structure
-
H. Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(5) (1998), 581-622.
-
(1998)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.15
, Issue.5
, pp. 581-622
-
-
Zaag, H.1
|