메뉴 건너뛰기




Volumn 1810, Issue , 2000, Pages 4-19

The representation race — Preprocessing for handling time phenomena

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS;

EID: 23044519289     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45164-1_2     Document Type: Conference Paper
Times cited : (16)

References (40)
  • 2
    • 0001371923 scopus 로고    scopus 로고
    • Fast discovery ofasso ciation rules
    • Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, chapter 12, AAAI Press/The MIT Press, Cambridge Massachusetts, London England
    • Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri Verkamo. Fast discovery ofasso ciation rules. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 12, pages 307-328. AAAI Press/The MIT Press, Cambridge Massachusetts, London England, 1996. 11
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 307-328
    • Agrawal, R.1    Mannila, H.2    Srikant, R.3    Toivonen, H.4    Inkeri Verkamo, A.5
  • 4
    • 0021466185 scopus 로고
    • Towards a general theory ofact ion and time
    • J. F. Allen. Towards a general theory ofact ion and time. Artificial Intelligence, 23:123-154, 1984. 8
    • (1984) Artificial Intelligence , vol.23 , pp. 123-154
    • Allen, J.F.1
  • 5
    • 33746062742 scopus 로고
    • Allen. Maintaining knowledge about temporal intervals
    • R. J. Brachman and H. J. Levesque, editors, chapter VII, Morgan Kaufman, Los Altos, CA
    • James F. Allen. Maintaining knowledge about temporal intervals. In R. J. Brachman and H. J. Levesque, editors, Readings in Knowledge Representation, chapter VII, pages 509-523. Morgan Kaufman, Los Altos, CA, 1985. 8
    • (1985) Readings in Knowledge Representation , pp. 509-523
    • James, F.1
  • 12
    • 0006741082 scopus 로고
    • On the decomposition ofc hain datalog programs into p (Left-)linear l-rule components
    • G. Dong and S. Ginsburg. On the decomposition ofc hain datalog programs into p (left-)linear l-rule components. Logic Programming, 23:203-236, 1995. 11
    • (1995) Logic Programming , vol.23 , pp. 203-236
    • Dong, G.1    Ginsburg, S.2
  • 13
    • 9444282245 scopus 로고    scopus 로고
    • Planning tasks for knowledge discovery in databases; performing task-oriented user-guidance
    • aug
    • Robert Engels. Planning tasks for knowledge discovery in databases; performing task-oriented user-guidance. In Proc. of th 2nd Int. Conf. on Knowledge Discovery in Databases, aug 1996. 6
    • (1996) Proc. of Th 2Nd Int. Conf. on Knowledge Discovery in Databases
    • Engels, R.1
  • 17
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Sch¨olkopf, C. Burges, and A. Smola, editors, MIT-Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Sch¨olkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning, chapter 11. MIT-Press, 1999. 15
    • (1999) Advances in Kernel Methods-Support Vector Learning, Chapter 11
    • Joachims, T.1
  • 18
    • 0345052053 scopus 로고
    • Controlling the complexity oflearn ing in logic through syntactic and task-oriented models
    • Stephen Muggleton, editor, chapter 16, Academic Press, London [u.a.]
    • J.-U. Kietz and S. Wrobel. Controlling the complexity oflearn ing in logic through syntactic and task-oriented models. In Stephen Muggleton, editor, Inductive Logic Programming., number 38 in The A.P.I.C. Series, chapter 16, pages 335-360. Academic Press, London [u.a.], 1992. 4
    • (1992) Inductive Logic Programming., Number 38 in the A.P.I.C. Series , pp. 335-360
    • Kietz, J.-U.1    Wrobel, S.2
  • 19
    • 85152515906 scopus 로고
    • An efficient subsumption algorithm for inductive logic programming
    • W. Cohen and H. Hirsh, editors, San Francisco, CA, Morgan Kaufmann
    • Jörg-Uwe Kietz and Marcus Lübbe. An efficient subsumption algorithm for inductive logic programming. In W. Cohen and H. Hirsh, editors, Proceedings of the 11th International Conference on Machine Learning IML-94, San Francisco, CA, 1994. Morgan Kaufmann. 5
    • (1994) Proceedings of the 11Th International Conference on Machine Learning IML-94
    • Kietz, J.-U.1    Marcus, L.2
  • 23
    • 0004080766 scopus 로고
    • Inductive Logic Programming — Techniques and Applications
    • Ellis Horwood, Hertfortshire
    • Nada Lavrač and Sašo Džeroski. Inductive Logic Programming — Techniques and Applications. Number 148 in Artificial Intelligence. Ellis Horwood, Hertfortshire, 1994. 4
    • (1994) Number 148 in Artificial Intelligence , pp. 4
    • Lavrač, N.1    Džeroski, S.2
  • 24
    • 84886666971 scopus 로고    scopus 로고
    • Construction, and Selection: A Data Mining Perspective. Kluwer
    • H. Liu and H. Motoda. Feature Extraction, Construction, and Selection: A Data Mining Perspective. Kluwer, 1998. 5
    • (1998) Feature Extraction
    • Liu, H.1    Motoda, H.2
  • 25
    • 0348145562 scopus 로고
    • Learning to predict sequences
    • R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Tioga Publishing Company, Los Altos
    • R.S. Michalski and T.G. Dietterich. Learning to predict sequences. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning-An Artificial Intelligence Approach Vol II, pages 63-106. Tioga Publishing Company, Los Altos, 1986. 8
    • (1986) Machine Learning-An Artificial Intelligence Approach Vol II , pp. 63-106
    • Michalski, R.S.1    Dietterich, T.G.2
  • 26
    • 85043413121 scopus 로고
    • Inferential learning theory as a basis for multistrategy taskadaptive learning
    • editors, Multistrategy Learning. George Mason University, USA
    • Ryszard Michalski. Inferential learning theory as a basis for multistrategy taskadaptive learning. In Michalski and Tecuci, editors, Multistrategy Learning. George Mason University, USA, 1991. 5
    • (1991) Michalski and Tecuci
    • Michalski, R.1
  • 30
    • 15544390690 scopus 로고    scopus 로고
    • Incremental signal to symbol processing
    • K. Morik, M. Kaiser, and V. Klingspor, editors, chapter 11, Kluwer Academic Publ
    • Katharina Morik and Stephanie Wessel. Incremental signal to symbol processing. In K. Morik, M. Kaiser, and V. Klingspor, editors, Making Robots Smarter-Combining Sensing and Action through Robot Learning, chapter 11, pages 185-198. Kluwer Academic Publ., 1999. 9, 14, 16
    • (1999) Making Robots Smarter-Combining Sensing and Action through Robot Learning , pp. 185-198
    • Morik, K.1    Wessel, S.2
  • 34
    • 85043409992 scopus 로고
    • Specification ofCon sultant-0 and a Comparision ofS everal Learning Algorithms
    • D. Sleeman, R. Oehlman, and R. Davidge. Specification ofCon sultant-0 and a Comparision ofS everal Learning Algorithms. Deliverable D5.1, Esprit Project P2154, 1989. 6
    • (1989) Deliverable D5.1, Esprit Project
    • Sleeman, D.1    Oehlman, R.2    Davidge, R.3
  • 35
    • 0042746399 scopus 로고
    • A theory ofj ustified reformulations
    • D. Benjamin, Paul, editor, Kluwer
    • Devika Subramanian. A theory ofj ustified reformulations. In D. Benjamin, Paul, editor, Change of Representation and Inductive Bias, pages 147-167. Kluwer, 1990. 4
    • (1990) Change of Representation and Inductive Bias , pp. 147-167
    • Subramanian, D.1
  • 36
    • 85052413652 scopus 로고    scopus 로고
    • Benutzerunterst¨utzung eines KDD-Prozesses anhand von Datencharackteristiken
    • F. Wysotzki, P. Geibel, and K. Sch¨adler, editors, volume 98/11 of Technical Report. Technical University Berlin
    • C. Theusinger and G. Lindner. Benutzerunterst¨utzung eines KDD-Prozesses anhand von Datencharackteristiken. In F. Wysotzki, P. Geibel, and K. Sch¨adler, editors, Beitr¨age zum Treffen der GI-Fachgruppe 1.1.3 Machinelles Lernen (FGML-98), volume 98/11 of Technical Report. Technical University Berlin, 1998. 6
    • (1998) Beitr¨age Zum Treffen Der Gi-Fachgruppe 1.1.3 Machinelles Lernen (FGML-98)
    • Theusinger, C.1    Lindner, G.2
  • 40
    • 84957093799 scopus 로고    scopus 로고
    • A region-based approach to discovering temporal structures in data
    • Ivan Bratko and Saso Dzeroski, editors, Morgan Kaufmann
    • Wei Zhang. A region-based approach to discovering temporal structures in data. In Ivan Bratko and Saso Dzeroski, editors, Proc. of 16th Int. Conf. on Machine Learning, pages 484-492. Morgan Kaufmann, 1999. 12
    • (1999) Proc. of 16Th Int. Conf. on Machine Learning , pp. 484-492
    • Zhang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.