메뉴 건너뛰기




Volumn 3244, Issue , 2004, Pages 395-409

New revision algorithms

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; GRAPH THEORY; LEARNING SYSTEMS; MATHEMATICAL MODELS; SET THEORY; THEOREM PROVING; ALGORITHMS;

EID: 22944434553     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30215-5_30     Document Type: Conference Paper
Times cited : (5)

References (30)
  • 1
    • 0029254047 scopus 로고
    • Learning in the presence of finitely or infinitely many irrelevant attributes
    • Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of finitely or infinitely many irrelevant attributes. J. of Comput. Syst. Sci. 50 (1995) 32-40
    • (1995) J. of Comput. Syst. Sci. , vol.50 , pp. 32-40
    • Blum, A.1    Hellerstein, L.2    Littlestone, N.3
  • 2
    • 22944456403 scopus 로고
    • Earlier version in 4th COLT, 1991.
    • (1991) 4th COLT
  • 3
    • 0032090599 scopus 로고    scopus 로고
    • Attribute-efficient learning in query and mistake-bound models
    • Bshouty, N., Hellerstein, L.: Attribute-efficient learning in query and mistake-bound models. J. of Comput. Syst. Sci. 56 (1998) 310-319
    • (1998) J. of Comput. Syst. Sci. , vol.56 , pp. 310-319
    • Bshouty, N.1    Hellerstein, L.2
  • 5
    • 0028407918 scopus 로고
    • Theory refinement combining analytical and empirical methods
    • Ourston, D., Mooney, R.J.: Theory refinement combining analytical and empirical methods. Artificial Intelligence 66 (1994) 273-309
    • (1994) Artificial Intelligence , vol.66 , pp. 273-309
    • Ourston, D.1    Mooney, R.J.2
  • 6
    • 0029308579 scopus 로고
    • Automated refinement of first-order Horn-clause domain theories
    • Richards, B.L., Mooney, R.J.: Automated refinement of first-order Horn-clause domain theories. Machine Learning 19 (1995) 95-131
    • (1995) Machine Learning , vol.19 , pp. 95-131
    • Richards, B.L.1    Mooney, R.J.2
  • 7
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Machine Learning 13 (1993) 71-101
    • (1993) Machine Learning , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 9
    • 0001936070 scopus 로고
    • First order theory refinement
    • De Raedt, L., ed.: IOS Press, Amsterdam
    • Wrobel, S.: First order theory refinement. In De Raedt, L., ed.: Advances in ILP. IOS Press, Amsterdam (1995) 14-33
    • (1995) Advances in ILP , pp. 14-33
    • Wrobel, S.1
  • 10
    • 0036568019 scopus 로고    scopus 로고
    • Theory revision with queries: DNF formulas
    • Goldsmith, J., Sloan, R.H., Turan, G.: Theory revision with queries: DNF formulas. Machine Learning 47 (2002) 257-295
    • (2002) Machine Learning , vol.47 , pp. 257-295
    • Goldsmith, J.1    Sloan, R.H.2    Turan, G.3
  • 13
    • 2442699209 scopus 로고    scopus 로고
    • Projective DNF formulae and their revision
    • Learning Theory and Kernel Machines, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings. Springer
    • Sloan, R.H., Szörényi, B., Turán, G.: Projective DNF formulae and their revision. In: Learning Theory and Kernel Machines, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings. Volume 2777 of Lecture Notes in Artificial Intelligence., Springer (2003) 625-639
    • (2003) Lecture Notes in Artificial Intelligence , vol.2777 , pp. 625-639
    • Sloan, R.H.1    Szörényi, B.2    Turán, G.3
  • 14
    • 22944462563 scopus 로고    scopus 로고
    • Master's thesis, Dept. of Computer Science, University of Kentucky
    • Doshi, J.U.: Revising Horn formulas. Master's thesis, Dept. of Computer Science, University of Kentucky (2003)
    • (2003) Revising Horn Formulas
    • Doshi, J.U.1
  • 15
    • 0000452640 scopus 로고
    • Learning conjunctions of Horn clauses
    • Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Machine Learning 9 (1992) 147-164
    • (1992) Machine Learning , vol.9 , pp. 147-164
    • Angluin, D.1    Frazier, M.2    Pitt, L.3
  • 16
    • 0033225586 scopus 로고    scopus 로고
    • Projection learning
    • Valiant, L.G.: Projection learning. Machine Learning 37 (1999) 115-130
    • (1999) Machine Learning , vol.37 , pp. 115-130
    • Valiant, L.G.1
  • 18
    • 4243195886 scopus 로고    scopus 로고
    • A neuroidal architecture for cognitive computation
    • Valiant, L.G.: A neuroidal architecture for cognitive computation. Journal of the ACM 47 (2000) 854-882
    • (2000) Journal of the ACM , vol.47 , pp. 854-882
    • Valiant, L.G.1
  • 20
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2 (1988) 285-318
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 21
    • 84949214707 scopus 로고    scopus 로고
    • Optimal attribute-efficient learning of disjunction, parity, and threshold functions
    • Computational Learning Theory, Third European Conference, EuroCOLT '97, Jerusalem, Israel, March 1997, Proceedings. Springer
    • Uehara, R., Tsuchida, K., Wegener, I.: Optimal attribute-efficient learning of disjunction, parity, and threshold functions. In: Computational Learning Theory, Third European Conference, EuroCOLT '97, Jerusalem, Israel, March 1997, Proceedings. Volume 1208 of Lecture Notes in Artificial Intelligence., Springer (1997) 171-184
    • (1997) Lecture Notes in Artificial Intelligence , vol.1208 , pp. 171-184
    • Uehara, R.1    Tsuchida, K.2    Wegener, I.3
  • 22
    • 84958045015 scopus 로고    scopus 로고
    • On learning disjunctions of zero-one threshold functions with queries
    • Algorithmic Learning Theory, 8th International Workshop, ALT '97, Sendai, Japan, October 1997, Proceedings. Springer
    • Hegedüs, T., Indyk, P.: On learning disjunctions of zero-one threshold functions with queries. In: Algorithmic Learning Theory, 8th International Workshop, ALT '97, Sendai, Japan, October 1997, Proceedings. Volume 1316 of Lecture Notes in Artificial Intelligence., Springer (1997) 446-460
    • (1997) Lecture Notes in Artificial Intelligence , vol.1316 , pp. 446-460
    • Hegedüs, T.1    Indyk, P.2
  • 23
    • 0039226404 scopus 로고
    • On training simple neural networks and small-weight neurons
    • Volume New Series Number 53 of The Institute of Mathematics and its Applications Conference Series., Oxford, Oxford University Press
    • Hegedüs, T.: On training simple neural networks and small-weight neurons. In: Computational Learning Theory: EuroColt '93. Volume New Series Number 53 of The Institute of Mathematics and its Applications Conference Series., Oxford, Oxford University Press (1994) 69-82
    • (1994) Computational Learning Theory: EuroColt '93 , pp. 69-82
    • Hegedüs, T.1
  • 24
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35 (1988) 965-984
    • (1988) J. ACM , vol.35 , pp. 965-984
    • Pitt, L.1    Valiant, L.G.2
  • 26
    • 84949212910 scopus 로고    scopus 로고
    • Learning from incomplete boundary queries using split graphs and hypergraphs
    • Computational Learning Theory, Third European Conference, EuroCOLT '97, Jerusalem, Israel, March 1997, Proceedings. Springer
    • Sloan, R.H., Turán, G.: Learning from incomplete boundary queries using split graphs and hypergraphs. In: Computational Learning Theory, Third European Conference, EuroCOLT '97, Jerusalem, Israel, March 1997, Proceedings. Number 1208 in Lecture Notes in Artificial Intelligence, Springer (1997) 38-50
    • (1997) Lecture Notes in Artificial Intelligence , vol.1208 , pp. 38-50
    • Sloan, R.H.1    Turán, G.2
  • 27
    • 0003837807 scopus 로고
    • Learning prepositional Horn sentences with hints
    • Department of Computer Science, Yale University
    • Angluin, D.: Learning prepositional Horn sentences with hints. Technical Report YALEU/DCS/RR-590, Department of Computer Science, Yale University (1987)
    • (1987) Technical Report , vol.YALEU-DCS-RR-590
    • Angluin, D.1
  • 28
    • 0029390560 scopus 로고
    • Quasi-acyclic propositional Horn knowledge bases: Optimal compression
    • Hammer, P.L., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compression. IEEE Trans. Knowl. Data Eng. 7 (1995) 751-762
    • (1995) IEEE Trans. Knowl. Data Eng. , vol.7 , pp. 751-762
    • Hammer, P.L.1    Kogan, A.2
  • 29
    • 84958061126 scopus 로고    scopus 로고
    • Learning acyclic first-order Horn sentences from entailment
    • Algorithmic Learning Theory, 8th International Workshop, ALT '97, Sendai, Japan, October 1997, Proceedings. Springer
    • Arimura, H.: Learning acyclic first-order Horn sentences from entailment. In: Algorithmic Learning Theory, 8th International Workshop, ALT '97, Sendai, Japan, October 1997, Proceedings. Volume 1316 of Lecture Notes in Artificial Intelligence., Springer (1997) 432-445
    • (1997) Lecture Notes in Artificial Intelligence , vol.1316 , pp. 432-445
    • Arimura, H.1
  • 30
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319-342
    • (1988) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.