메뉴 건너뛰기




Volumn 1208, Issue , 1997, Pages 38-50

Learning from incomplete boundary queries using split graphs and hypergraphs:(Extended abstract)

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; GRAPH ALGORITHMS; GRAPH THEORY; QUERY PROCESSING;

EID: 84949212910     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-62685-9_5     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 1
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Apr
    • D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, Apr. 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 3
    • 84949301130 scopus 로고    scopus 로고
    • Malicious omissions and errors in answers to membership queries
    • To appear
    • D. Angluin, M. Krikis, R. H. Sloan, and G. Turán. Malicious omissions and errors in answers to membership queries. Machine Learning. To appear.
    • Machine Learning
    • Angluin, D.1    Krikis, M.2    Sloan, R.H.3    Turán, G.4
  • 4
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 5
    • 0013446086 scopus 로고
    • Randomly fallible teachers: Learning monotone DNF with an incomplete membership oracle
    • D. Angluin and D. K. Slonim. Randomly fallible teachers: learning monotone DNF with an incomplete membership oracle. Machine Learning, 14(1):7-26, 1994.
    • (1994) Machine Learning , vol.14 , Issue.1 , pp. 7-26
    • Angluin, D.1    Slonim, D.K.2
  • 8
    • 0008165967 scopus 로고
    • An algorithm to learn read-once threshold formulas, and transformations between learning models
    • N. Bshouty, T. Hancock, L. Hellerstein, and M. Karpinski. An algorithm to learn read-once threshold formulas, and transformations between learning models. Computational Complexity, 4:37-61, 1994.
    • (1994) Computational Complexity , vol.4 , pp. 37-61
    • Bshouty, N.1    Hancock, T.2    Hellerstein, L.3    Karpinski, M.4
  • 10
    • 0026995318 scopus 로고
    • Learning k-term DNF formulas with an incomplete membership oracle
    • ACM Press, New York, NY
    • S. A. Goldman and H. D. Mathias. Learning k-term DNF formulas with an incomplete membership oracle. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 77-84. ACM Press, New York, NY, 1992.
    • (1992) Proc. 5th Annu. Workshop on Comput. Learning Theory , pp. 77-84
    • Goldman, S.A.1    Mathias, H.D.2
  • 11
    • 0013411860 scopus 로고
    • Can PAC learning algorithms tolerate random attribute noise?
    • S. A. Goldman and R. H. Sloan. Can PAC learning algorithms tolerate random attribute noise? Algorithmica, 14:70-84, 1995.
    • (1995) Algorithmica , vol.14 , pp. 70-84
    • Goldman, S.A.1    Sloan, R.H.2
  • 12
    • 0041140892 scopus 로고
    • Algorithmic Graph Theory and Perfect Graphs
    • Academic Press, New York
    • M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Computer Science and Applied Mathematics. Academic Press, New York, 1980.
    • (1980) Computer Science and Applied Mathematics
    • Golumbic, M.C.1
  • 13
    • 0040981036 scopus 로고
    • Learning monotone boolean functions by uniformly distributed examples
    • Q. P. Gu and A. Maruoka. Learning monotone boolean functions by uniformly distributed examples. SIAM J. Comput., 21:587-599, 1992.
    • (1992) SIAM J. Comput , vol.21 , pp. 587-599
    • Gu, Q.P.1    Maruoka, A.2
  • 16
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 19
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples. J
    • L. Pitt and L. Valiant. Computational limitations on learning from examples. J. ACM, 35:965-984, 1988.
    • (1988) ACM , vol.35 , pp. 965-984
    • Pitt, L.1    Valiant, L.2
  • 20
    • 0026119624 scopus 로고
    • On learning from queries and counterexamples in the presence of noise
    • Y. Sakakibara. On learning from queries and counterexamples in the presence of noise. Inform. Proc. Lett., 37:279-284, 1991.
    • (1991) Inform. Proc. Lett , vol.37 , pp. 279-284
    • Sakakibara, Y.1
  • 21
    • 0000607171 scopus 로고
    • Four types of noise in data for PAC learning
    • R. H. Sloan. Four types of noise in data for PAC learning. Inform. Proc. Lett., 54:157-162, 1995.
    • (1995) Inform. Proc. Lett , vol.54 , pp. 157-162
    • Sloan, R.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.