메뉴 건너뛰기




Volumn 36, Issue 4, 2005, Pages 1130-1141

On the inviscid limit for two-dimensional incompressible flow with Navier friction condition

Author keywords

Boundary layers; Navier Stokes; Vanishing viscosity

Indexed keywords

BOUNDARY LAYERS; FRICTION; INCOMPRESSIBLE FLOW; MATHEMATICAL MODELS; NAVIER STOKES EQUATIONS; TWO DIMENSIONAL; VISCOSITY; VORTEX FLOW;

EID: 22544438444     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036141003432341     Document Type: Article
Times cited : (106)

References (18)
  • 1
    • 0346997444 scopus 로고    scopus 로고
    • On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
    • T. CLOPEAU, A. MIKELIĆ, AND R. ROBERT, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), pp. 1625-1636.
    • (1998) Nonlinearity , vol.11 , pp. 1625-1636
    • Clopeau, T.1    Mikelić, A.2    Robert, R.3
  • 2
    • 84968509708 scopus 로고
    • Existence de nappes de tourbillon en dimension deux
    • J.-M. DELORT, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), pp. 553-586.
    • (1991) J. Amer. Math. Soc. , vol.4 , pp. 553-586
    • Delort, J.-M.1
  • 3
    • 0347354928 scopus 로고    scopus 로고
    • Linear instability implies nonlinear instability for various types of viscous boundary layers
    • B. DESJARDINS AND E. GRENIER, Linear instability implies nonlinear instability for various types of viscous boundary layers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 87-106.
    • (2003) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.20 , pp. 87-106
    • Desjardins, B.1    Grenier, E.2
  • 4
    • 0346383902 scopus 로고    scopus 로고
    • Two-dimensional Euler equations in a time dependent domain
    • C. HE AND L. HSIAO, Two-dimensional Euler equations in a time dependent domain, J. Differential Equations, 163 (2000), pp. 265-291.
    • (2000) J. Differential Equations , vol.163 , pp. 265-291
    • He, C.1    Hsiao, L.2
  • 5
    • 0013203348 scopus 로고    scopus 로고
    • On the roughness-induced effective boundary conditions for an incompressible viscous flow
    • W. JÄGER AND A. MIKELIĆ, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 170 (2001), pp. 96-122.
    • (2001) J. Differential Equations , vol.170 , pp. 96-122
    • Jäger, W.1    Mikelić, A.2
  • 6
    • 0037276543 scopus 로고    scopus 로고
    • Couette flows over a rough boundary and drag reduction
    • W. JÄGER AND A. MIKELIĆ, Couette flows over a rough boundary and drag reduction, Comm. Math. Phys., 232 (2003), pp. 429-455.
    • (2003) Comm. Math. Phys. , vol.232 , pp. 429-455
    • Jäger, W.1    Mikelić, A.2
  • 9
    • 0002043421 scopus 로고    scopus 로고
    • Mathematical topics in fluid mechanics. Vol. I, incompressible models
    • Clarendon Press, Oxford
    • P. L. LIONS, Mathematical Topics in Fluid Mechanics. Vol. I, Incompressible Models, Oxford Lecture Ser. Math. Appl. 3, Clarendon Press, Oxford, 1996.
    • (1996) Oxford Lecture Ser. Math. Appl. , vol.3
    • Lions, P.L.1
  • 10
    • 84990655570 scopus 로고
    • Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheet data
    • J.-G. LIU AND Z. XIN, Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheet data, Comm. Pure Appl. Math., 48 (1995), pp. 611-628.
    • (1995) Comm. Pure Appl. Math. , vol.48 , pp. 611-628
    • Liu, J.-G.1    Xin, Z.2
  • 11
    • 0001496981 scopus 로고
    • Remarks on weak solutions for vortex sheets with a distinguished sign
    • A. J. MAJDA, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., 42 (1993), pp. 921-939.
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 921-939
    • Majda, A.J.1
  • 13
    • 0030520674 scopus 로고    scopus 로고
    • The point-vortex method for periodic weak solutions of the 2-D Euler equations
    • S. SCHOCHET, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., 49 (1996), pp. 911-965.
    • (1996) Comm. Pure Appl. Math. , vol.49 , pp. 911-965
    • Schochet, S.1
  • 14
    • 0036496598 scopus 로고    scopus 로고
    • Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case
    • R. TEMAM AND X. WANG, Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case, J. Differential Equations, 179 (2002), pp. 647-686.
    • (2002) J. Differential Equations , vol.179 , pp. 647-686
    • Temam, R.1    Wang, X.2
  • 15
    • 0000637524 scopus 로고
    • 1-vorticity for 2-D incompressible flow
    • 1-vorticity for 2-D incompressible flow, Manuscripta Math., 78 (1993), pp. 403-412.
    • (1993) Manuscripta Math. , vol.78 , pp. 403-412
    • Vecchi, I.1    Wu, S.2
  • 16
    • 0033472885 scopus 로고    scopus 로고
    • Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type
    • M. VISHIK, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup. (4), 32 (1999), pp. 769-812.
    • (1999) Ann. Sci. École Norm. Sup. (4) , vol.32 , pp. 769-812
    • Vishik, M.1
  • 17
    • 0001751564 scopus 로고
    • Non-stationary flows of an ideal incompressible fluid, Ž
    • in Russian
    • V. I. YUDOVICH, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), pp. 1032-1066 (in Russian).
    • (1963) Vyčisl. Mat. i Mat. Fiz. , vol.3 , pp. 1032-1066
    • Yudovich, V.I.1
  • 18
    • 0002131061 scopus 로고
    • Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid
    • V. I. YUDOVICH, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), pp. 27-38.
    • (1995) Math. Res. Lett. , vol.2 , pp. 27-38
    • Yudovich, V.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.