메뉴 건너뛰기




Volumn 11, Issue 6, 1998, Pages 1625-1636

On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0346997444     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/11/6/011     Document Type: Article
Times cited : (212)

References (18)
  • 5
    • 0000514910 scopus 로고
    • Inviscid limit for vortex patches
    • Constantin P and Wu J 1995 Inviscid limit for vortex patches Nonlinearity 8 735-42
    • (1995) Nonlinearity , vol.8 , pp. 735-742
    • Constantin, P.1    Wu, J.2
  • 6
    • 0346634277 scopus 로고
    • Considerations regarding the mathematical basis for Prandtl's boundary layer theory
    • Fife P C 1967 Considerations regarding the mathematical basis for Prandtl's boundary layer theory Arch. Ration. Mech. Anal. 38 184-216
    • (1967) Arch. Ration. Mech. Anal. , vol.38 , pp. 184-216
    • Fife, P.C.1
  • 9
    • 0013253496 scopus 로고
    • Sur les lois de l'équilibre et du mouvement des corps élastiques
    • Navier C L M H 1827 Sur les lois de l'équilibre et du mouvement des corps élastiques Mem. Acad. R. Sci. Inst. France 6 369
    • (1827) Mem. Acad. R. Sci. Inst. France , vol.6 , pp. 369
    • Navier, C.L.M.H.1
  • 10
    • 0038538865 scopus 로고
    • Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids
    • Parés C 1992 Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids Appl. Anal. 43 245-96
    • (1992) Appl. Anal. , vol.43 , pp. 245-296
    • Parés, C.1
  • 12
    • 0032371860 scopus 로고    scopus 로고
    • Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier-Stokes solution
    • Sammartino M and Caflisch R E 1998 Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier-Stokes solution Commun. Math. Phys. 192 433-61 Sammartino M and Caflisch R E 1998 Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier-Stokes solution Commun. Math. Phys. 192 463-91
    • (1998) Commun. Math. Phys. , vol.192 , pp. 433-461
    • Sammartino, M.1    Caflisch, R.E.2
  • 13
    • 84875267000 scopus 로고    scopus 로고
    • Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier-Stokes solution
    • Sammartino M and Caflisch R E 1998 Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier- Stokes solution Commun. Math. Phys. 192 433-61 Sammartino M and Caflisch R E 1998 Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I existence for Euler and Prandtl equations; II construction of the Navier-Stokes solution Commun. Math. Phys. 192 463-91
    • (1998) Commun. Math. Phys. , vol.192 , pp. 463-491
    • Sammartino, M.1    Caflisch, R.E.2
  • 14
    • 0000286944 scopus 로고
    • Mathematical principles of classical fluid mechanics
    • (Berlin: Springer)
    • Serrin J 1959 Mathematical principles of classical fluid mechanics Handbuch der Physics vol 8/1 (Berlin: Springer) pp 125-263
    • (1959) Handbuch der Physics , vol.1-8 , pp. 125-263
    • Serrin, J.1
  • 16
    • 0000734351 scopus 로고
    • Asymptotic analysis of the linearized Navier-Stokes equations in a channel
    • Temam R and Wang X 1995 Asymptotic analysis of the linearized Navier-Stokes equations in a channel Differ. Int. Eqns 8 1591-618
    • (1995) Differ. Int. Eqns , vol.8 , pp. 1591-1618
    • Temam, R.1    Wang, X.2
  • 17
    • 0001703051 scopus 로고    scopus 로고
    • Asymptotic analysis of Oseen type equations in a channel at small viscosity 1995
    • Temam R and Wang X 1996 Asymptotic analysis of Oseen type equations in a channel at small viscosity 1995 Indiana Univ. Math. J. 45 863-915
    • (1996) Indiana Univ. Math. J. , vol.45 , pp. 863-915
    • Temam, R.1    Wang, X.2
  • 18
    • 0001751564 scopus 로고
    • Non-stationary flow of an ideal incompressible liquid
    • in Russian
    • Yudovich V I 1963 Non-stationary flow of an ideal incompressible liquid Zhurn. Vych. Mat. 3 1032-66 (in Russian)
    • (1963) Zhurn. Vych. Mat. , vol.3 , pp. 1032-1066
    • Yudovich, V.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.