메뉴 건너뛰기




Volumn 1725, Issue , 1999, Pages 459-469

Some afterthoughts on hopfield networks

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; POLYNOMIAL APPROXIMATION;

EID: 22444452776     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-47849-3_34     Document Type: Conference Paper
Times cited : (2)

References (34)
  • 2
    • 0031190762 scopus 로고    scopus 로고
    • Computational power of neural networks: A characterization in terms of Kolmogorov complexity
    • Balcázar, J. L., Gavaldà, R., Siegelmann, H. T. Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions of Information Theory, 43, 1175-1183, 1997.
    • (1997) IEEE Transactions of Information Theory , vol.43 , pp. 1175-1183
    • Balcázar, J.L.1    Gavaldà, R.2    Siegelmann, H.T.3
  • 3
    • 0001051761 scopus 로고
    • On the computational complexity of Ising spin glass models
    • Barahona, F. On the computational complexity of Ising spin glass models. Journal of Physics A, 15, 3241-3253, 1982.
    • (1982) Journal of Physics A , vol.15 , pp. 3241-3253
    • Barahona, F.1
  • 5
    • 0031236165 scopus 로고    scopus 로고
    • Approximability of the ground state problem for certain Ising spin glasses
    • Bertoni, A., Campadelli, P., Gangai, C., Posenato, R. Approximability of the ground state problem for certain Ising spin glasses. Journal of Complexity, 13, 323-339, 1997.
    • (1997) Journal of Complexity , vol.13 , pp. 323-339
    • Bertoni, A.1    Campadelli, P.2    Gangai, C.3    Posenato, R.4
  • 6
    • 0001271312 scopus 로고
    • On the ground states of the frustration model of a spin glass by a matching method of graph theory
    • Bieche, I., Maynard, R., Rammal, R., Uhry, J. P. On the ground states of the frustration model of a spin glass by a matching method of graph theory. Journal of Physics A, 13, 2553-2576, 1980.
    • (1980) Journal of Physics A , vol.13 , pp. 2553-2576
    • Bieche, I.1    Maynard, R.2    Rammal, R.3    Uhry, J.P.4
  • 7
    • 84975548756 scopus 로고
    • Optical implementation of the Hopfield model
    • Farhat, N. H., Psaltis, D., Prata, A., Paek, E. Optical implementation of the Hopfield model. Applied Optics, 24, 1469-1475, 1985.
    • (1985) Applied Optics , vol.24 , pp. 1469-1475
    • Farhat, N.H.1    Psaltis, D.2    Prata, A.3    Paek, E.4
  • 8
    • 0026219835 scopus 로고
    • Worst-case convergence times for Hopfield memories
    • Floreen, P. Worst-case convergence times for Hopfield memories. IEEE Transactions on Neural Networks, 2, 533-535, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 533-535
    • Floreen, P.1
  • 10
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M. X., Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42, 1115-1145, 1995.
    • (1995) Journal of the ACM , vol.42 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 11
    • 0003579696 scopus 로고
    • Exponential transient classes of symmetric neural networks for synchronous and sequential updating
    • Goles, E., Martínez, S. Exponential transient classes of symmetric neural networks for synchronous and sequential updating. Complex Systems, 3, 589-597, 1989.
    • (1989) Complex Systems , vol.3 , pp. 589-597
    • Goles, E.1    Martínez, S.2
  • 12
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, vol. 79, 2554-2558, 1982.
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 13
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. In Proceedings of the National Academy of Sciences, vol. 81, 3088-3092, 1984.
    • (1984) Proceedings of the National Academy of Sciences , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 14
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield, J. J., Tank, D. W. “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52, 141-152, 1985.
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 15
    • 0030110968 scopus 로고    scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • Horne, B. G., Hush, D. R. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks, 9, 243-252, 1996.
    • (1996) Neural Networks , vol.9 , pp. 243-252
    • Horne, B.G.1    Hush, D.R.2
  • 17
    • 0001213937 scopus 로고
    • Dynamics of discrete time, continuous state Hopfield networks
    • Koiran, P. Dynamics of discrete time, continuous state Hopfield networks. Neural Computation, 6, 459-468, 1994.
    • (1994) Neural Computation , vol.6 , pp. 459-468
    • Koiran, P.1
  • 18
    • 0023829082 scopus 로고
    • Convergence results in an associative memory model
    • Komlos, P., Paturi, R. Convergence results in an associative memory model. Neural Networks, 1, 239-250, 1988.
    • (1988) Neural Networks , vol.1 , pp. 239-250
    • Komlos, P.1    Paturi, R.2
  • 19
    • 0001243798 scopus 로고    scopus 로고
    • On the effect of analog noise in discrete-time analog computations
    • Maass, W., Orponen, P. On the effect of analog noise in discrete-time analog computations. Neural Computation, 10, 1071-1095, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1071-1095
    • Maass, W.1    Orponen, P.2
  • 21
    • 2342531031 scopus 로고    scopus 로고
    • The computational power of discrete Hopfield nets with hidden units
    • Orponen, P. The computational power of discrete Hopfield nets with hidden units. Neural Computation, 8, 403-415, 1996.
    • (1996) Neural Computation , vol.8 , pp. 403-415
    • Orponen, P.1
  • 22
    • 0242511413 scopus 로고
    • A primer on the complexity theory of neural networks
    • editor R. B. Banerji, Elsevier, North-Holland
    • Parberry, I. A primer on the complexity theory of neural networks. In Formal Techniques in Artificial Intelligence: A Sourcebook, editor R. B. Banerji, 217-268, Elsevier, North-Holland, 1990.
    • (1990) Formal Techniques in Artificial Intelligence: A Sourcebook , pp. 217-268
    • Parberry, I.1
  • 23
    • 51249185440 scopus 로고
    • On periodical behaviour in societies with symmetric influences
    • Poljak, S., Sura, M. On periodical behaviour in societies with symmetric influences. Combinatorica, 3, 119-121, 1983.
    • (1983) Combinatorica , vol.3 , pp. 119-121
    • Poljak, S.1    Sura, M.2
  • 28
    • 0031378623 scopus 로고    scopus 로고
    • Analog stable simulation of discrete neural networks
    • Šíma, J. Analog stable simulation of discrete neural networks. Neural Network World, 7, 679-686, 1997.
    • (1997) Neural Network World , vol.7 , pp. 679-686
    • Šíma, J.1
  • 34
    • 0038906851 scopus 로고
    • Complexity issues in discrete neurocomputing
    • Wiedermann, J. Complexity issues in discrete neurocomputing. Neural Network World, 4, 99-119, 1994.
    • (1994) Neural Network World , vol.4 , pp. 99-119
    • Wiedermann, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.