메뉴 건너뛰기




Volumn 95, Issue 451, 2000, Pages 877-887

Fully model-based approaches for spatially misaligned data

Author keywords

Areal interpolation; Bayesian methods; Environmental risk analysis; Geographic information system; Markov chain Monte Carlo

Indexed keywords


EID: 2242462362     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2000.10474279     Document Type: Article
Times cited : (79)

References (33)
  • 1
    • 0028835190 scopus 로고
    • Bayesian Estimates of Disease Maps: How Important are Priors?
    • Bernardinelli, L., Clayton, D. G., and Montomoli, C. (1995), “Bayesian Estimates of Disease Maps: How Important are Priors?,” Statistics in Medicine, 14, 2411-2431.
    • (1995) Statistics in Medicine , vol.14 , pp. 2411-2431
    • Bernardinelli, L.1    Clayton, D.G.2    Montomoli, C.3
  • 2
    • 0026710523 scopus 로고
    • Empirical Bayes Versus Fully Bayesian Analysis of Geographical Variation in Disease Risk
    • Bernardinelli, L., and Montomoli, C. (1992), “Empirical Bayes Versus Fully Bayesian Analysis of Geographical Variation in Disease Risk,” Statistics in Medicine, 11, 983-1007.
    • (1992) Statistics in Medicine , vol.11 , pp. 983-1007
    • Bernardinelli, L.1    Montomoli, C.2
  • 3
    • 0000913755 scopus 로고
    • Spatial Interaction and the Statistical Analysis of Lattice Systems
    • Besag, J. (1974), “Spatial Interaction and the Statistical Analysis of Lattice Systems” (with discussion), Journal of the Royal Statistical Society, Ser. B, 36, 192-236.
    • (1974) Journal of the Royal Statistical Society , vol.36 , pp. 192-236
    • Besag, J.1
  • 4
    • 0141477361 scopus 로고
    • Bayesian Computation and Stochastic Systems
    • Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995), “Bayesian Computation and Stochastic Systems” (with discussion), Statistical Science., 10, 3-66.
    • (1995) Statistical Science , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 9
    • 0028787482 scopus 로고
    • Modeling the Errors in Areal Interpolation Between Zonal Systems Using Monte Carlo Simulation
    • Fisher, P. F., and Langford, M. (1995), “Modeling the Errors in Areal Interpolation Between Zonal Systems Using Monte Carlo Simulation,” Environment and Planning A, 27, 211-224.
    • (1995) Environment and Planning A , vol.27 , pp. 211-224
    • Fisher, P.F.1    Langford, M.2
  • 10
    • 0024943532 scopus 로고
    • Statistical Methods for Inference Between Incompatible Zonal Systems
    • M. F. Goodchild and S. Gopal, London: Taylor and Francis
    • Flowerdew, R., and Green, M. (1989), “Statistical Methods for Inference Between Incompatible Zonal Systems,” in Accuracy of Spatial Databases, eds. M. F. Goodchild and S. Gopal, London: Taylor and Francis, pp. 239-248.
    • (1989) Accuracy of Spatial Databases , pp. 239-248
    • Flowerdew, R.1    Green, M.2
  • 11
    • 0026302529 scopus 로고
    • Data Integration: Statistical Methods for Transferring Data Between Zonal Systems
    • I. Masser and M. Blakemore, Essex, U.K.: Longman, Harlow
    • Flowerdew, R., and Green, M. (1991), “Data Integration: Statistical Methods for Transferring Data Between Zonal Systems,” in Handling Geographical Information: Methodology and Potential Applications, eds. I. Masser and M. Blakemore, Essex, U.K.: Longman, Harlow, pp. 38-54.
    • (1991) Handling Geographical Information: Methodology and Potential Applications , pp. 38-54
    • Flowerdew, R.1    Green, M.2
  • 12
    • 34249838677 scopus 로고
    • Developments in Areal Interpolating Methods and GIS
    • Flowerdew, R., and Green, M. (1992), “Developments in Areal Interpolating Methods and GIS,” Annals of Regional Science, 26, 67-78.
    • (1992) Annals of Regional Science , vol.26 , pp. 67-78
    • Flowerdew, R.1    Green, M.2
  • 13
    • 0028599616 scopus 로고
    • Areal Interpolation and Types of Data
    • S. Fotheringham and P. Rogerson, London: Taylor and Francis
    • Flowerdew, R., and Green, M. (1994), “Areal Interpolation and Types of Data,” in Spatial Analysis and GIS, eds. S. Fotheringham and P. Rogerson, London: Taylor and Francis, pp. 121-145.
    • (1994) Spatial Analysis and GIS , pp. 121-145
    • Flowerdew, R.1    Green, M.2
  • 14
    • 0037784714 scopus 로고
    • Using Areal Interpolation Methods in Geographic Information Systems
    • Flowerdew, R., Green, M., and Kehris, E. (1991), “Using Areal Interpolation Methods in Geographic Information Systems,” Papers in Regional Science, 70, 303-315.
    • (1991) Papers in Regional Science , vol.70 , pp. 303-315
    • Flowerdew, R.1    Green, M.2    Kehris, E.3
  • 15
    • 0002799511 scopus 로고    scopus 로고
    • Model Choice: A Minimum Posterior Predictive Loss Approach
    • Gelfand, A. E., and Ghosh, S. K. (1998), “Model Choice: A Minimum Posterior Predictive Loss Approach,” Biometrika, 85, 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 16
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis Jumping Rules
    • J. M. Bernardo, J. O
    • Gelman, A., Roberts, G. O., and Gilks, W. R. (1996), “Efficient Metropolis Jumping Rules,” in Bayesian Statistics 5, eds. J. M. Bernardo, J. O.
    • (1996) Bayesian Statistics , vol.5
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 17
    • 85012520160 scopus 로고    scopus 로고
    • Oxford, U.K.: Oxford University Press
    • Berger, A. P. Dawid, and A. F. M. Smith, Oxford, U.K.: Oxford University Press, pp. 599-607.
    • Berger, A.P.D.1    Smith, A.F.M.2
  • 18
    • 84972492387 scopus 로고
    • Inference From Iterative Simulation Using Multiple Sequences
    • Gelman, A., and Rubin, D. B. (1992), “Inference From Iterative Simulation Using Multiple Sequences” (with discussion), Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 19
    • 84950437936 scopus 로고
    • Annealing Markov Chain Monte Carlo With Applications to Ancestral Inference
    • Geyer, C. J., and Thompson, E. A. (1995), “Annealing Markov Chain Monte Carlo With Applications to Ancestral Inference,” Journal of the American Statistical Association, 90, 909-920.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 20
    • 0027464502 scopus 로고
    • A Framework for the Areal Interpolation of Socioeconomic Data
    • Goodchild, M. F., Ansellin, L., and Deichmann, U. (1993), “A Framework for the Areal Interpolation of Socioeconomic Data,” Environment and Planning A, 25, 383-387.
    • (1993) Environment and Planning A , vol.25 , pp. 383-387
    • Goodchild, M.F.1    Ansellin, L.2    Deichmann, U.3
  • 21
    • 0019095230 scopus 로고
    • Areal Interpolation: A Variant of the Traditional Spatial Problem
    • Goodchild, M. F., and Lam, N. S.-N. (1980), “Areal Interpolation: A Variant of the Traditional Spatial Problem,” Geoprocessing, 1, 297-312.
    • (1980) Geoprocessing , vol.1 , pp. 297-312
    • Goodchild, M.F.1    Lam, N.S.2
  • 23
    • 0021032607 scopus 로고
    • Spatial Interpolation Methods: A Review
    • Lam, N. S.-N. (1983), “Spatial Interpolation Methods: A Review,” American Cartographer, 10, 129-149.
    • (1983) American Cartographer , vol.10 , pp. 129-149
    • Lam, N.S.1
  • 24
    • 0026381683 scopus 로고
    • The Areal Interpolation Problem: Estimating Population Using Remote Sensing in a GIS Framework
    • I. Masser and M. Blakemore, Essex, U.K.: Longman, Harlow
    • Langford, M., Maguire, D. J., and Unwin, D. J. (1991), “The Areal Interpolation Problem: Estimating Population Using Remote Sensing in a GIS Framework,” in Handling Geographical Information: Methodology and Potential Applications, eds. I. Masser and M. Blakemore, Essex, U.K.: Longman, Harlow, pp. 55-77.
    • (1991) Handling Geographical Information: Methodology and Potential Applications , pp. 55-77
    • Langford, M.1    Maguire, D.J.2    Unwin, D.J.3
  • 25
    • 0001789822 scopus 로고
    • Covariance Structure of the Gibbs Sampler With Applications to the Comparisons of Estimators and Augmentation Schemes
    • Liu, J. S., Wong, W. H., and Kong, A. (1994), “Covariance Structure of the Gibbs Sampler With Applications to the Comparisons of Estimators and Augmentation Schemes,” Biometrika, 81, 27-30.
    • (1994) Biometrika , vol.81 , pp. 27-30
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 27
    • 0002007463 scopus 로고    scopus 로고
    • Hierarchical Modeling in Geographic Information Systems: Population Interpolation Over Incompatible Zones
    • Mugglin, A. S., and Carlin, B. P. (1998), “Hierarchical Modeling in Geographic Information Systems: Population Interpolation Over Incompatible Zones,” Journal of Agricultural, Biological, and Environmental Statistics, 3, 111-130.
    • (1998) Journal of Agricultural, Biological, and Environmental Statistics , vol.3 , pp. 111-130
    • Mugglin, A.S.1    Carlin, B.P.2
  • 28
    • 0032831192 scopus 로고    scopus 로고
    • Bayesian Areal Interpolation, Estimation, and Smoothing: An Inferential Approach for Geographic Information Systems
    • Mugglin, A. S., Carlin, B. P., Zhu, L., and Conlon, E. (1999), “Bayesian Areal Interpolation, Estimation, and Smoothing: An Inferential Approach for Geographic Information Systems,” Environment and Planning A, 31, 1337-1352.
    • (1999) Environment and Planning A , vol.31 , pp. 1337-1352
    • Mugglin, A.S.1    Carlin, B.P.2    Zhu, L.3    Conlon, E.4
  • 29
    • 0031025226 scopus 로고    scopus 로고
    • Historical Dose Reconstruction Project: Estimating the Population at Risk
    • Rogers, J. F., and Killough, G. G. (1997), “Historical Dose Reconstruction Project: Estimating the Population at Risk,” Health Physics, 72, 186-194.
    • (1997) Health Physics , vol.72 , pp. 186-194
    • Rogers, J.F.1    Killough, G.G.2
  • 31
    • 0018659851 scopus 로고
    • Smooth Pycnophylactic Interpolation for Geographical Regions
    • Tobler, W. R. (1979), “Smooth Pycnophylactic Interpolation for Geographical Regions” (with discussion), Journal of the American Statistical Association, 74, 519-536.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 519-536
    • Tobler, W.R.1
  • 33
    • 0033967678 scopus 로고    scopus 로고
    • Hierarchical Modeling of Spatio-Temporally Misaligned Data: Relating Traffic Density to Pediatric Asthma Hospitalizations
    • Zhu, L., Carlin, B. P., English, P., and Scalf, R. (2000), “Hierarchical Modeling of Spatio-Temporally Misaligned Data: Relating Traffic Density to Pediatric Asthma Hospitalizations,” Environmetrics, 11, 43-61.
    • (2000) Environmetrics , vol.11 , pp. 43-61
    • Zhu, L.1    Carlin, B.P.2    English, P.3    Scalf, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.