-
1
-
-
0038778726
-
Global bifurcation in the Brusselator system
-
K.J. Brown F.A. Davidson Global bifurcation in the Brusselator system Nonlinear Anal. 12 1995 1713-1725
-
(1995)
Nonlinear Anal.
, vol.12
, pp. 1713-1725
-
-
Brown, K.J.1
Davidson, F.A.2
-
2
-
-
0346072299
-
Pattern formation in three-dimensional reaction-diffusion systems
-
T.K. Callahan E. Knobloch Pattern formation in three-dimensional reaction-diffusion systems Phys. D 132 1999 339-362
-
(1999)
Phys. D
, vol.132
, pp. 339-362
-
-
Callahan, T.K.1
Knobloch, E.2
-
3
-
-
84972537529
-
Existence and uniqueness of coexistence states for a predator-prey model with diffusion
-
A. Casal J.C. Eilbeck J. López-Gómez Existence and uniqueness of coexistence states for a predator-prey model with diffusion Differential Integral Equations 7 1994 411-439
-
(1994)
Differential Integral Equations
, vol.7
, pp. 411-439
-
-
Casal, A.1
Eilbeck, J.C.2
López-Gómez, J.3
-
4
-
-
0347686268
-
A strongly coupled predator-prey system with non-monotonic functional response
-
preprint
-
X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, preprint
-
-
-
Chen, X.F.1
Ni, W.M.2
Qi, Y.W.3
Wang, M.X.4
-
5
-
-
1542720931
-
Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model
-
W.Y. Chen R. Peng Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model J. Math. Anal. Appl. 291 2004 550-564
-
(2004)
J. Math. Anal. Appl.
, vol.291
, pp. 550-564
-
-
Chen, W.Y.1
Peng, R.2
-
7
-
-
0000814522
-
A counterexample of competing species equations
-
E.N. Dancer A counterexample of competing species equations Differential Integral Equations 9 1996 239-246
-
(1996)
Differential Integral Equations
, vol.9
, pp. 239-246
-
-
Dancer, E.N.1
-
8
-
-
0033634578
-
On the symbiotic Lotka-Volterra model with diffusion and transport effects
-
M. Delgado J. López-Gómez A. Suarez On the symbiotic Lotka-Volterra model with diffusion and transport effects J. Differential Equations 160 2000 175-262
-
(2000)
J. Differential Equations
, vol.160
, pp. 175-262
-
-
Delgado, M.1
López-Gómez, J.2
Suarez, A.3
-
9
-
-
21744459836
-
Some uniqueness and exact multiplicity results for a predator-prey model
-
Y.H. Du Y. Lou Some uniqueness and exact multiplicity results for a predator-prey model Trans. Amer. Math. Soc. 349 1997 2443-2475
-
(1997)
Trans. Amer. Math. Soc.
, vol.349
, pp. 2443-2475
-
-
Du, Y.H.1
Lou, Y.2
-
10
-
-
23044527512
-
Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation
-
Y.H. Du Y. Lou Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation Proc. Roy. Soc. Edinburgh Sect. A 131 2001 321-349
-
(2001)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.131
, pp. 321-349
-
-
Du, Y.H.1
Lou, Y.2
-
11
-
-
0000002470
-
Strips or spots? Nonlinear effects in bifurcation of reaction diffusion equation on the square
-
B. Ermentrout Strips or spots? Nonlinear effects in bifurcation of reaction diffusion equation on the square Proc. Roy. Soc. London 434 1991 413-417
-
(1991)
Proc. Roy. Soc. London
, vol.434
, pp. 413-417
-
-
Ermentrout, B.1
-
14
-
-
0034652878
-
Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion
-
Y. Kan-on Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion J. Math. Anal. Appl. 243 2000 357-372
-
(2000)
J. Math. Anal. Appl.
, vol.243
, pp. 357-372
-
-
Kan-on, Y.1
-
15
-
-
0032389543
-
Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics
-
Y. Kan-on M. Mimura Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics SIAM J. Math. Anal. 29 1998 1519-1536
-
(1998)
SIAM J. Math. Anal.
, vol.29
, pp. 1519-1536
-
-
Kan-on, Y.1
Mimura, M.2
-
16
-
-
0347055376
-
On 3 × 3 Lotka-Volterra competition systems with cross-diffusion
-
Y. Lou S. Martinez W.M. Ni On 3 × 3 Lotka-Volterra competition systems with cross-diffusion Discrete Contin. Dynam. Systems 6 2000 175-190
-
(2000)
Discrete Contin. Dynam. Systems
, vol.6
, pp. 175-190
-
-
Lou, Y.1
Martinez, S.2
Ni, W.M.3
-
17
-
-
0030579038
-
Diffusion, self-diffusion and cross-diffusion
-
Y. Lou W.M. Ni Diffusion, self-diffusion and cross-diffusion J. Differential Equations 131 1996 79-131
-
(1996)
J. Differential Equations
, vol.131
, pp. 79-131
-
-
Lou, Y.1
Ni, W.M.2
-
18
-
-
0033130048
-
Diffusion vs. cross-diffusion: An elliptic approach
-
Y. Lou W.M. Ni Diffusion vs. cross-diffusion: An elliptic approach J. Differential Equations 154 1999 157-190
-
(1999)
J. Differential Equations
, vol.154
, pp. 157-190
-
-
Lou, Y.1
Ni, W.M.2
-
19
-
-
0008827179
-
Pattern formation in coupled reaction-diffusion systems
-
M. Mimura Y. Nishiura Pattern formation in coupled reaction-diffusion systems Japan J. Indust. Appl. Math. 12 1995 385-424
-
(1995)
Japan J. Indust. Appl. Math.
, vol.12
, pp. 385-424
-
-
Mimura, M.1
Nishiura, Y.2
-
20
-
-
22144441915
-
Patterns of spatio-temporal organization in chemical and biochemical kinetics
-
G. Nicolis Patterns of spatio-temporal organization in chemical and biochemical kinetics SIAM-AMS Proc. 8 1974 33-58
-
(1974)
SIAM-AMS Proc.
, vol.8
, pp. 33-58
-
-
Nicolis, G.1
-
22
-
-
36849102494
-
Symmetry breaking instabilities in dissipative systems II
-
I. Prigogene R. Lefever Symmetry breaking instabilities in dissipative systems II J. Chem. Phys. 48 1968 1665-1700
-
(1968)
J. Chem. Phys.
, vol.48
, pp. 1665-1700
-
-
Prigogene, I.1
Lefever, R.2
-
23
-
-
1442279582
-
Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion
-
P.Y.H. Pang M.X. Wang Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion Proc. London Math. Soc. 88 2004 135-157
-
(2004)
Proc. London Math. Soc.
, vol.88
, pp. 135-157
-
-
Pang, P.Y.H.1
Wang, M.X.2
-
24
-
-
0141957171
-
Qualitative analysis of a ratio-dependent predator-prey system with diffusion
-
P.Y.H. Pang M.X. Wang Qualitative analysis of a ratio-dependent predator-prey system with diffusion Proc. Roy. Soc. Edinburgh Sect. A 133 2003 919-942
-
(2003)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.133
, pp. 919-942
-
-
Pang, P.Y.H.1
Wang, M.X.2
-
25
-
-
0346340796
-
Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction
-
R. Peng M.X. Wang Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction Nonlinear Anal. 56 2004 451-464
-
(2004)
Nonlinear Anal.
, vol.56
, pp. 451-464
-
-
Peng, R.1
Wang, M.X.2
-
26
-
-
36448974335
-
Some global results for nonlinear eigenvalue problems
-
P. Rabinowitz Some global results for nonlinear eigenvalue problems J. Funct. Anal. 7 1971 487-513
-
(1971)
J. Funct. Anal.
, vol.7
, pp. 487-513
-
-
Rabinowitz, P.1
-
27
-
-
0002011401
-
The chemical basis of morphogenesis
-
A. Turing The chemical basis of morphogenesis Philos. Trans. Roy. Soc. Ser. B 237 1952 37-72
-
(1952)
Philos. Trans. Roy. Soc. Ser. B
, vol.237
, pp. 37-72
-
-
Turing, A.1
-
28
-
-
0037845132
-
Non-constant positive steady-states of the Sel'kov model
-
M.X. Wang Non-constant positive steady-states of the Sel'kov model J. Differential Equations 190 2003 600-620
-
(2003)
J. Differential Equations
, vol.190
, pp. 600-620
-
-
Wang, M.X.1
-
29
-
-
22144475302
-
Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion
-
in press
-
M.X. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Phys. D, in press
-
Phys. D
-
-
Wang, M.X.1
-
30
-
-
0035918674
-
A system of resource-based growth models with two resources in the unstirred chemostat
-
J.H. Wu G.S.K. Wolkowicz A system of resource-based growth models with two resources in the unstirred chemostat J. Differential Equations 172 2001 300-332
-
(2001)
J. Differential Equations
, vol.172
, pp. 300-332
-
-
Wu, J.H.1
Wolkowicz, G.S.K.2
|