-
2
-
-
84972514721
-
Stability of singularly perturbed solutions to nonlinear diffusion system arising in population dynamics
-
Y. Kan, Stability of singularly perturbed solutions to nonlinear diffusion system arising in population dynamics, Hiroshima Math. J. 23 (1993), 509-536.
-
(1993)
Hiroshima Math. J.
, vol.23
, pp. 509-536
-
-
Kan, Y.1
-
3
-
-
0002542873
-
Large amplitude stationary solutions to a chemotais systems
-
C. S. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotais systems, J. Differential Equations 72 (1988), 1-27.
-
(1988)
J. Differential Equations
, vol.72
, pp. 1-27
-
-
Lin, C.S.1
Ni, W.M.2
Takagi, I.3
-
4
-
-
0030579038
-
Diffusion, self-diffusion and cross-diffusion
-
Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), 79-131.
-
(1996)
J. Differential Equations
, vol.131
, pp. 79-131
-
-
Lou, Y.1
Ni, W.M.2
-
5
-
-
84998211051
-
Pattern formation in competition-diffusion systems in non-conve domains
-
H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-conve domains, Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 (1983), 1049-1079.
-
(1983)
Publ. Res. Inst. Math. Sci. Kyoto Univ.
, vol.19
, pp. 1049-1079
-
-
Matano, H.1
Mimura, M.2
-
6
-
-
84972502084
-
Stationary pattern of some density-dependent diffusion system with competitive dynamics
-
M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J. 11 (1981), 621-635.
-
(1981)
Hiroshima Math. J.
, vol.11
, pp. 621-635
-
-
Mimura, M.1
-
7
-
-
0018830043
-
Spatial segregation in competitive interaction-diffusion equations
-
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol. 9 (1980), 49-64.
-
(1980)
J. Math. Biol.
, vol.9
, pp. 49-64
-
-
Mimura, M.1
Kawasaki, K.2
-
8
-
-
84972584509
-
Coexistence problem for two competing species models with density-dependent diffusion
-
M. Mimura, Y. Nishiura, A. Tesei, and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J. 14 (1984), 425-449.
-
(1984)
Hiroshima Math. J.
, vol.14
, pp. 425-449
-
-
Mimura, M.1
Nishiura, Y.2
Tesei, A.3
Tsujikawa, T.4
-
9
-
-
0001672333
-
Point condensation generated by a reaction-diffusion system in axially symmetric domains
-
Wei-Ming Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains Japan J. Indust. Appl. Math. 12 (1995), 327-365.
-
(1995)
Japan J. Indust. Appl. Math.
, vol.12
, pp. 327-365
-
-
Wei-Ming, N.1
Takagi, I.2
-
10
-
-
84971179248
-
Locating the peaks of least-energy solutions to a semilinear Neumann problem
-
Wei-Ming Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
-
(1993)
Duke Math. J.
, vol.70
, pp. 247-281
-
-
Wei-Ming, N.1
Takagi, I.2
-
11
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
Wei-Ming Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851.
-
(1991)
Comm. Pure Appl. Math.
, vol.44
, pp. 819-851
-
-
Wei-Ming, N.1
Takagi, I.2
-
13
-
-
0018783879
-
Spatial segregation of interacting species
-
N. Shigesada, K. Kawasaki, and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), 83-99
-
(1979)
J. Theoret. Biol.
, vol.79
, pp. 83-99
-
-
Shigesada, N.1
Kawasaki, K.2
Teramoto, E.3
-
14
-
-
0000195746
-
Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus
-
G. Stampacchia, Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier 15(1) 965), 189-258.
-
(1965)
Ann. Inst. Fourier
, vol.15
, pp. 189-258
-
-
Stampacchia, G.1
-
15
-
-
0004326709
-
Existence of stationary solutions for a class of cross-diffusion systems with small parameters
-
Science Press, Beijing, to appear
-
Y. P. Wu, Existence of stationary solutions for a class of cross-diffusion systems with small parameters, in "Lecture Notes on Contemporary Mathematics," Science Press, Beijing, to appear.
-
Lecture Notes on Contemporary Mathematics
-
-
Wu, Y.P.1
|