메뉴 건너뛰기




Volumn 14, Issue 2, 2005, Pages 122-131

A neural network based multi-classifier system for gene identification in DNA sequences

Author keywords

Genetic algorithms; Multi classifier systems; Neural network optimization; Neural networks; Promoter recognition

Indexed keywords

DECISION THEORY; DNA; FUNCTIONS; GENES; GENETIC ALGORITHMS; MATHEMATICAL MODELS; OPTIMIZATION; TREES (MATHEMATICS);

EID: 22144436656     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-004-0447-7     Document Type: Article
Times cited : (60)

References (34)
  • 2
    • 0035327171 scopus 로고    scopus 로고
    • Hidden Markov Models in biological sequence analysis
    • Birney E (2001) Hidden Markov Models in biological sequence analysis. IBM J Res Dev 45(3/4):449-454
    • (2001) IBM J Res Dev , vol.45 , Issue.3-4 , pp. 449-454
    • Birney, E.1
  • 3
    • 0025744474 scopus 로고
    • Prediction of human mRNA donor and acceptor sites from the DNA sequence
    • Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49-65
    • (1991) J Mol Biol , vol.220 , Issue.1 , pp. 49-65
    • Brunak, S.1    Engelbrecht, J.2    Knudsen, S.3
  • 4
    • 0025853156 scopus 로고
    • Neural network optimization for E. coli promoter prediction
    • Demeler B, Zhou GW (1991) Neural network optimization for E. coli promoter prediction. Nucleic Acids Res 19(7):1593-1599
    • (1991) Nucleic Acids Res , vol.19 , Issue.7 , pp. 1593-1599
    • Demeler, B.1    Zhou, G.W.2
  • 5
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Dietterich TG (1997) Machine learning research: four current directions. AI Mag 18(4):97-136
    • (1997) AI Mag , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 6
    • 0022358896 scopus 로고
    • Rigorous pattern-recognition methods for DNA sequences: Analysis of promoter sequences from E. coli
    • Galas DJ, Eggert M, Waterman MS (1985) Rigorous pattern-recognition methods for DNA sequences: analysis of promoter sequences from E. coli. J Mol Biol 186(1): 117-128
    • (1985) J Mol Biol , vol.186 , Issue.1 , pp. 117-128
    • Galas, D.J.1    Eggert, M.2    Waterman, M.S.3
  • 8
    • 0030810993 scopus 로고    scopus 로고
    • Finding genes in DNA with a hidden markov model
    • Henderson, J, Salzberg S, Fasman K (1997) Finding genes in DNA with a hidden markov model. J Comput Biol 4(2): 127-141
    • (1997) J Comput Biol , vol.4 , Issue.2 , pp. 127-141
    • Henderson, J.1    Salzberg, S.2    Fasman, K.3
  • 12
    • 0035521109 scopus 로고    scopus 로고
    • Application of Bayesian neural networks to biological data mining: A case study in DNA sequence classification
    • Ma Q, Wang JTL, Wu CH (2001) Application of Bayesian neural networks to biological data mining: a case study in DNA sequence classification. IEEE Trans Syst Man Cybern Part C 31(4):468-475
    • (2001) IEEE Trans Syst Man Cybern Part C , vol.31 , Issue.4 , pp. 468-475
    • Ma, Q.1    Wang, J.T.L.2    Wu, C.H.3
  • 14
    • 0028283660 scopus 로고
    • Analysis of E. coli promoter structures using neural networks
    • Mahadevan I, Ghosh I (1994) Analysis of E. coli promoter structures using neural networks. Nucleic Acids Res 22(11):2158-2165
    • (1994) Nucleic Acids Res , vol.22 , Issue.11 , pp. 2158-2165
    • Mahadevan, I.1    Ghosh, I.2
  • 15
    • 85012722936 scopus 로고
    • Combining the classification results of independent classifiers based on the dempster/schafer theory of evidence
    • Mandler EJ, Schurmann J (1988) Combining the classification results of independent classifiers based on the Dempster/Schafer theory of evidence. Pattern Recognit Artif Intell X:381-393
    • (1988) Pattern Recognit Artif Intell , vol.10 , pp. 381-393
    • Mandler, E.J.1    Schurmann, J.2
  • 16
    • 0036450273 scopus 로고    scopus 로고
    • Classification of gene expression data using fuzzy logic
    • Ohno-Machado L, Vinterbo S, Weber G (2002) Classification of gene expression data using fuzzy logic. J Intell Fuzzy Syst 12(1): 19-24
    • (2002) J Intell Fuzzy Syst , vol.12 , Issue.1 , pp. 19-24
    • Ohno-Machado, L.1    Vinterbo, S.2    Weber, G.3
  • 17
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neuralnet systems
    • Partridge D, Yates WB (1996) Engineering multiversion neuralnet systems. Neural Comput 8:869-893
    • (1996) Neural Comput , vol.8 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 20
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using neural networks and multiple sequence alignments
    • Riis SK, Krogh A (1996) Improving prediction of protein secondary structure using neural networks and multiple sequence alignments. J Comput Biol 3:163-183
    • (1996) J Comput Biol , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 21
    • 0027961797 scopus 로고
    • Combining the results of several neural network classifiers
    • Rogova G (1994) Combining the results of several neural network classifiers. Neural Netw 7(5):777-781
    • (1994) Neural Netw , vol.7 , Issue.5 , pp. 777-781
    • Rogova, G.1
  • 23
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584-599
    • (1993) J Mol Biol , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 24
    • 1142278388 scopus 로고    scopus 로고
    • Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems
    • ISBN: 3-906454-27-4, Abstract p 50, Paper no.# 1824-025, Paisley
    • Ruta D, Gabrys B (2001) Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems. In: Proceedings of the SOCO/ISFI'2001 conference, ISBN: 3-906454-27-4, Abstract p 50, Paper no.# 1824-025, Paisley
    • (2001) Proceedings of the SOCO/ISFI'2001 Conference
    • Ruta, D.1    Gabrys, B.2
  • 26
    • 0031224574 scopus 로고    scopus 로고
    • Combining diverse neural networks
    • Sharkey ACJ, Sharkey NE (1997) Combining diverse neural networks. Knowl Eng Rev 12(3):231-247
    • (1997) Knowl Eng Rev , vol.12 , Issue.3 , pp. 231-247
    • Sharkey, A.C.J.1    Sharkey, N.E.2
  • 27
    • 0028965444 scopus 로고
    • Identification of protein coding regions in genomic DNA
    • Snyder EE, Stormo G (1995) Identification of protein coding regions in genomic DNA. J Mol Biol 248:1-18
    • (1995) J Mol Biol , vol.248 , pp. 1-18
    • Snyder, E.E.1    Stormo, G.2
  • 28
    • 0020480251 scopus 로고
    • Use of the Perceptron algorithm to distinguish translation initiation sites in E. coli
    • Stormo GD, Schneider TD, Gold LM, Ehrenfeucht A (1982) Use of the Perceptron algorithm to distinguish translation initiation sites in E. coli. Nucleic Acids Res 10:2997-3011
    • (1982) Nucleic Acids Res , vol.10 , pp. 2997-3011
    • Stormo, G.D.1    Schneider, T.D.2    Gold, L.M.3    Ehrenfeucht, A.4
  • 29
    • 0026351408 scopus 로고
    • Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach
    • Uberbacher EC, Mural RJ (1991) Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 88:11261-11265
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 11261-11265
    • Uberbacher, E.C.1    Mural, R.J.2
  • 30
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analysing gene expression data
    • Woolf PJ, Wang Y (2000) A fuzzy logic approach to analysing gene expression data. Physiol Genomics 3:9-15
    • (2000) Physiol Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 31
    • 0031283308 scopus 로고    scopus 로고
    • Artificial neural networks for molecular sequence analysis
    • Wu CH (1997) Artificial neural networks for molecular sequence analysis. Comput Chem 21(4):237-256
    • (1997) Comput Chem , vol.21 , Issue.4 , pp. 237-256
    • Wu, C.H.1
  • 33
    • 0026860706 scopus 로고
    • Methods for combining multiple classifiers and their applications to handwriting recognition
    • Xu L, Krzyzak A, Suen CY (1992) Methods for combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22(3):418-435
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 34
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Zenobi G, Cuningham P (2001) Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Proceedings of the 12th European conference on machine learning, pp 576-587
    • (2001) Proceedings of the 12th European Conference on Machine Learning , pp. 576-587
    • Zenobi, G.1    Cuningham, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.