|
Volumn 67, Issue 1-4 SUPPL., 2005, Pages 403-410
|
Boosting Naïve Bayes text classification using uncertainty-based selective sampling
|
Author keywords
Active learning; Boosting; Machine learning; Na ve Bayes learning; Selective sampling; Uncertainty
|
Indexed keywords
ADAPTIVE SYSTEMS;
ALGORITHMS;
UNCERTAIN SYSTEMS;
BOOSTING ALGORITHM;
CLASSIFICATION ACCURACY;
SELECTIVE SAMPLING;
TEXT CLASSIFICATION;
CLASSIFICATION (OF INFORMATION);
ACCURACY;
ALGORITHM;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
BAYES THEOREM;
CLASSIFICATION;
COMPUTER PROGRAM;
DATA ANALYSIS;
DOCUMENT EXAMINATION;
INFORMATION PROCESSING;
MATHEMATICAL COMPUTING;
MAXIMUM LIKELIHOOD METHOD;
PRIORITY JOURNAL;
PROBABILITY;
SAMPLING;
SIMULATION;
STATISTICAL MODEL;
STATISTICAL PARAMETERS;
|
EID: 21744460586
PISSN: 09252312
EISSN: None
Source Type: Journal
DOI: 10.1016/j.neucom.2004.09.003 Document Type: Article |
Times cited : (15)
|
References (9)
|