메뉴 건너뛰기




Volumn 132, Issue 3, 2005, Pages 438-470

Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21644483183     PISSN: 01788051     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00440-004-0405-4     Document Type: Article
Times cited : (29)

References (26)
  • 1
    • 0001639861 scopus 로고
    • Tree graph inequalities and critical behavior in percolation models
    • Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36, 107-143 (1984)
    • (1984) J. Statist. Phys. , vol.36 , pp. 107-143
    • Aizenman, M.1    Newman, C.M.2
  • 2
    • 0000699765 scopus 로고
    • Percolation critical exponents under the triangle condition
    • Barsky, D.J., Aizenman, M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520-1536 (1991)
    • (1991) Ann. Probab. , vol.19 , pp. 1520-1536
    • Barsky, D.J.1    Aizenman, M.2
  • 3
    • 0000236076 scopus 로고
    • Exponential decay for subcritical contact and percolation processes
    • Bezuidenhout, C., Grimmett, G.: Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19, 984-1009 (1991)
    • (1991) Ann. Probab. , vol.19 , pp. 984-1009
    • Bezuidenhout, C.1    Grimmett, G.2
  • 4
    • 0001032409 scopus 로고
    • Statistical mechanics of crabgrass
    • Bramson, M., Durrett, R., Swindle, G.: Statistical mechanics of crabgrass. Ann. Probab. 17, 444-481 (1989)
    • (1989) Ann. Probab. , vol.17 , pp. 444-481
    • Bramson, M.1    Durrett, R.2    Swindle, G.3
  • 5
    • 21644433958 scopus 로고    scopus 로고
    • Random subgraphs of finite graphs: II. The lace expansion and the triangle condition
    • Preprint To appear in
    • Borgs, C., Chayes, J.T., Van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs: II. The lace expansion and the triangle condition. Preprint (2003). To appear in Ann. Probab.
    • (2003) Ann. Probab.
    • Borgs, C.1    Chayes, J.T.2    Van Der Hofstad, R.3    Slade, G.4    Spencer, J.5
  • 6
    • 84976077801 scopus 로고
    • Oriented percolation in dimensions d ≥ 4: Bounds and asymptotic formulars
    • Cox, J.T., Durrett, R.: Oriented percolation in dimensions d ≥ 4: bounds and asymptotic formulars. Math. Proc. Cambridge Philos. Soc. 93, 151-162 (1983)
    • (1983) Math. Proc. Cambridge Philos. Soc. , vol.93 , pp. 151-162
    • Cox, J.T.1    Durrett, R.2
  • 7
    • 0038979178 scopus 로고    scopus 로고
    • Rescaled contact processes converge to super-Brownian motion in two or more dimensions
    • Durrett, R., Perkins, E.: Rescaled contact processes converge to super-Brownian motion in two or more dimensions. Probab. Th. Rel. Fields 114, 309-399 (1999)
    • (1999) Probab. Th. Rel. Fields , vol.114 , pp. 309-399
    • Durrett, R.1    Perkins, E.2
  • 9
    • 0002977776 scopus 로고    scopus 로고
    • Directed percolation and random walk
    • V. Sidoravicius Birkhäuser
    • Grimmett, G., Hiemer, P.: Directed percolation and random walk. V. Sidoravicius (ed.), In and Out of Equilibrium, Birkhäuser 2002, pp. 273-297
    • (2002) In and out of Equilibrium , pp. 273-297
    • Grimmett, G.1    Hiemer, P.2
  • 10
    • 0037253416 scopus 로고    scopus 로고
    • Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models
    • Hara, T., Van der Hofstad, R., Slade, G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349-408 (2003)
    • (2003) Ann. Probab. , vol.31 , pp. 349-408
    • Hara, T.1    Van Der Hofstad, R.2    Slade, G.3
  • 11
    • 34249952953 scopus 로고
    • Mean-field critical behaviour for percolation in high dimensions
    • Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333-391 (1990)
    • (1990) Commun. Math. Phys. , vol.128 , pp. 333-391
    • Hara, T.1    Slade, G.2
  • 12
    • 84974065206 scopus 로고
    • The self-avoiding-walk and percolation critical points in high dimensions
    • Hara, T., Slade, G.: The self-avoiding-walk and percolation critical points in high dimensions. Combin. Probab. Comput. 4, 197-215 (1995)
    • (1995) Combin. Probab. Comput. , vol.4 , pp. 197-215
    • Hara, T.1    Slade, G.2
  • 14
    • 8744247449 scopus 로고    scopus 로고
    • Gaussian scaling for the critical spread-out contact process above the upper critical dimension
    • van der Hofstad, R., Sakai, A.: Gaussian scaling for the critical spread-out contact process above the upper critical dimension. Electr. Journ. Probab. 9, 710-769 (2004)
    • (2004) Electr. Journ. Probab. , vol.9 , pp. 710-769
    • Van Der Hofstad, R.1    Sakai, A.2
  • 15
    • 0036004916 scopus 로고    scopus 로고
    • A generalised inductive approach to the lace expansion
    • van der Hofstad, R., Slade, G.: A generalised inductive approach to the lace expansion. Probab. Th. Rel. Fields 122, 389-430 (2002)
    • (2002) Probab. Th. Rel. Fields , vol.122 , pp. 389-430
    • Van Der Hofstad, R.1    Slade, G.2
  • 16
    • 0037402965 scopus 로고    scopus 로고
    • Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions
    • van der Hofstad, R., Slade, G.: Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions. Ann. Inst. H. Poincaré Probab. Statist. 39, 413-485 (2003)
    • (2003) Ann. Inst. H. Poincaré Probab. Statist. , vol.39 , pp. 413-485
    • Van Der Hofstad, R.1    Slade, G.2
  • 17
    • 0038286482 scopus 로고    scopus 로고
    • The lace expansion on a tree with application to networks of self-avoiding walks
    • van der Hofstad, R., Slade, G.: The lace expansion on a tree with application to networks of self-avoiding walks. Adv. Appl. Math. 30, 471-528 (2003)
    • (2003) Adv. Appl. Math. , vol.30 , pp. 471-528
    • Van Der Hofstad, R.1    Slade, G.2
  • 20
    • 0002697969 scopus 로고
    • The critical probability of bond percolation on the square lattice equals 1/2
    • Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74, 41-59 (1980)
    • (1980) Commun. Math. Phys. , vol.74 , pp. 41-59
    • Kesten, H.1
  • 22
    • 0031493470 scopus 로고    scopus 로고
    • Stochastic models of interacting systems
    • Liggett, T.: Stochastic models of interacting systems. Ann. Probab. 25, 1-29 (1997)
    • (1997) Ann. Probab. , vol.25 , pp. 1-29
    • Liggett, T.1
  • 24
    • 0000553017 scopus 로고
    • Triangle condition for oriented percolation in high dimensions
    • Nguyen, B.G., Yang, W.S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21, 1809-1844 (1993)
    • (1993) Ann. Probab. , vol.21 , pp. 1809-1844
    • Nguyen, B.G.1    Yang, W.S.2
  • 25
    • 21844489840 scopus 로고
    • Self-avoiding walks and trees in spread-out lattices
    • Penrose, M.D.: Self-avoiding walks and trees in spread-out lattices. J. Statist. Phys. 77, 3-15 (1994)
    • (1994) J. Statist. Phys. , vol.77 , pp. 3-15
    • Penrose, M.D.1
  • 26
    • 0035535108 scopus 로고    scopus 로고
    • Mean-field critical behavior for the contact process
    • Sakai, A.: Mean-field critical behavior for the contact process. J. Statist. Phys. 104, 111-143 (2001)
    • (2001) J. Statist. Phys. , vol.104 , pp. 111-143
    • Sakai, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.