-
1
-
-
0037121064
-
-
a) D. Zhang, L. Qi, J. Ma, H. Cheng, Adv. Mater. 2002, 14, 1499.
-
(2002)
Adv. Mater.
, vol.14
, pp. 1499
-
-
Zhang, D.1
Qi, L.2
Ma, J.3
Cheng, H.4
-
2
-
-
0037540061
-
-
b) Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. C. Han, Angew. Chem. Int. Ed. 2003, 42, 1943.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 1943
-
-
Yang, Z.1
Niu, Z.2
Lu, Y.3
Hu, Z.4
Han, C.C.5
-
6
-
-
11744356234
-
-
a) B. Martínez, X. Obradors, L. I. Balcells, A. Rovanet, C. Monty, Phys. Rev. Lett. 1998, 80, 181.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 181
-
-
Martínez, B.1
Obradors, X.2
Balcells, L.I.3
Rovanet, A.4
Monty, C.5
-
7
-
-
0037426882
-
-
b) P. Tartaj, T. González-Carreño, C. J. Serna, J. Phys. Chem. B 2003, 107, 20.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 20
-
-
Tartaj, P.1
González-Carreño, T.2
Serna, C.J.3
-
8
-
-
0038678078
-
-
c) S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, J. Phys. Chem. B 2003, 107, 5419.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 5419
-
-
Sun, S.1
Anders, S.2
Thomson, T.3
Baglin, J.E.E.4
Toney, M.F.5
Hamann, H.F.6
Murray, C.B.7
Terris, B.D.8
-
9
-
-
0037774679
-
-
d) F. X. Redl, K.-S. Cho, C. B. Murray, S. O. O'Brien, Nature 2003, 423, 968.
-
(2003)
Nature
, vol.423
, pp. 968
-
-
Redl, F.X.1
Cho, K.-S.2
Murray, C.B.3
O'Brien, S.O.4
-
10
-
-
0035477915
-
-
P. Allia, M. Coisson, P. Tiberto, F. Viani, M. Knobel, M. A. Novak, W. C. Nunes, Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 144 420.
-
(2001)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.64
, pp. 144420
-
-
Allia, P.1
Coisson, M.2
Tiberto, P.3
Viani, F.4
Knobel, M.5
Novak, M.A.6
Nunes, W.C.7
-
11
-
-
0038444472
-
-
P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, C. J. Serna, J. Phys. D: Appl. Phys. 2003, 36, R182.
-
(2003)
J. Phys. D: Appl. Phys.
, vol.36
-
-
Tartaj, P.1
Morales, M.P.2
Veintemillas-Verdaguer, S.3
Gonzalez-Carreño, T.4
Serna, C.J.5
-
12
-
-
0041846627
-
-
Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 2003, 36, R167.
-
(2003)
J. Phys. D: Appl. Phys.
, vol.36
-
-
Pankhurst, Q.A.1
Connolly, J.2
Jones, S.K.3
Dobson, J.4
-
13
-
-
0037471238
-
-
a) M. Zhao, L. Josephson, Y. Tang, R. Weissleder, Angew. Chem. Int. Ed. 2003, 42, 1375.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 1375
-
-
Zhao, M.1
Josephson, L.2
Tang, Y.3
Weissleder, R.4
-
14
-
-
0037442620
-
-
b) A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman, R. A. Gross, J. Am. Chem. Soc. 2003, 125, 1684.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 1684
-
-
Dyal, A.1
Loos, K.2
Noto, M.3
Chang, S.W.4
Spagnoli, C.5
Shafi, K.V.P.M.6
Ulman, A.7
Cowman, M.8
Gross, R.A.9
-
15
-
-
0037467431
-
-
c) Y. Weizmann, F. Patolosky, E. Katz, I. Willner, J. Am. Chem. Soc. 2003, 125, 3452.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 3452
-
-
Weizmann, Y.1
Patolosky, F.2
Katz, E.3
Willner, I.4
-
16
-
-
0035899958
-
-
B. Xia, I. W. Lenggoro, K. Okuyama, Adv. Mater. 2001, 13, 1579.
-
(2001)
Adv. Mater.
, vol.13
, pp. 1579
-
-
Xia, B.1
Lenggoro, I.W.2
Okuyama, K.3
-
17
-
-
0037062840
-
-
P. Tartaj, T González-Carreño, C. J. Serna, Langmuir 2002, 18, 4556.
-
(2002)
Langmuir
, vol.18
, pp. 4556
-
-
Tartaj, P.1
González-Carreño, T.2
Serna, C.J.3
-
18
-
-
37649026072
-
-
P. Tartaj, T. González-Carreño, C. J. Serna, Adv. Mater. 2001, 13, 1620.
-
(2001)
Adv. Mater.
, vol.13
, pp. 1620
-
-
Tartaj, P.1
González-Carreño, T.2
Serna, C.J.3
-
19
-
-
0001683787
-
-
B. Martinez, A. Roig, E. Molins, T. González-Carreño, C. J. Serna, J. Appl. Phys. 1998, 83, 3256.
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 3256
-
-
Martinez, B.1
Roig, A.2
Molins, E.3
González-Carreño, T.4
Serna, C.J.5
-
20
-
-
2142738114
-
-
Evidence of hollowness in the samples was corroborated by scanning electron microscopy. Using this technique we observed a similar microstructure in all samples. In the scanning mode we only observed the surface of particles, and since the resolution is much smaller than in the transmission mode, we can expect dense and hollow spheres to appear similar
-
Evidence of hollowness in the samples was corroborated by scanning electron microscopy. Using this technique we observed a similar microstructure in all samples. In the scanning mode we only observed the surface of particles, and since the resolution is much smaller than in the transmission mode, we can expect dense and hollow spheres to appear similar.
-
-
-
-
21
-
-
0027109297
-
-
M. El-Hilo, K. O'Grady, R. W. Chantrell, J. Magn. Magn. Mater. 1992, 114, 295.
-
(1992)
J. Magn. Magn. Mater.
, vol.114
, pp. 295
-
-
El-Hilo, M.1
O'Grady, K.2
Chantrell, R.W.3
-
22
-
-
0000605983
-
-
S. Moørup, F. Bødker, P. V. Hendriksen, S. Linderoth, Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 52, 287.
-
(1995)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.52
, pp. 287
-
-
Moørup, S.1
Bødker, F.2
Hendriksen, P.V.3
Linderoth, S.4
-
23
-
-
0036870189
-
-
C. Binns, M. J. Maher, Q. A. Pankhurst, D. Kechrakos, K. N. Trohidou, Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 184 413.
-
(2002)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.66
, pp. 184413
-
-
Binns, C.1
Maher, M.J.2
Pankhurst, Q.A.3
Kechrakos, D.4
Trohidou, K.N.5
-
27
-
-
2142685023
-
-
s depends on temperature we can expect differences in the value of T* at different temperatures. This is the reason why we estimate T* at 300 K (working temperature for most of the relevant technological applications of magnetic nanoparticles)
-
s depends on temperature we can expect differences in the value of T* at different temperatures. This is the reason why we estimate T* at 300 K (working temperature for most of the relevant technological applications of magnetic nanoparticles).
-
-
-
-
28
-
-
2142724122
-
-
A fit with Equation 3, superimposed with a log-normal particle size distribution results in strongly correlated parameters of T* and the median panicle size. However, the agreement between the particle size estimated following this model and that estimated from X-ray diffraction seems to suggest that the fit was reliable. In any case, it is clear that the mean field model is successful in describing dipolar interactions between nanomagnets
-
A fit with Equation 3, superimposed with a log-normal particle size distribution results in strongly correlated parameters of T* and the median panicle size. However, the agreement between the particle size estimated following this model and that estimated from X-ray diffraction seems to suggest that the fit was reliable. In any case, it is clear that the mean field model is successful in describing dipolar interactions between nanomagnets.
-
-
-
-
29
-
-
0035061085
-
-
A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, O. A. Kuznetsov, J. Magn. Magn. Mater. 2001, 225, 95.
-
(2001)
J. Magn. Magn. Mater.
, vol.225
, pp. 95
-
-
Kuznetsov, A.A.1
Filippov, V.I.2
Alyautdin, R.N.3
Torshina, N.L.4
Kuznetsov, O.A.5
-
30
-
-
0035058519
-
-
A. Voigt, N. Buske, G. B. Sukhorukov, A. A. Antipov, S. Leporatti, H. Listenfeld, H. Bäumler, E. Donath, H. Möhwald, J. Magn. Magn. Mater. 2001, 225, 59.
-
(2001)
J. Magn. Magn. Mater.
, vol.225
, pp. 59
-
-
Voigt, A.1
Buske, N.2
Sukhorukov, G.B.3
Antipov, A.A.4
Leporatti, S.5
Listenfeld, H.6
Bäumler, H.7
Donath, E.8
Möhwald, H.9
|