메뉴 건너뛰기




Volumn 18, Issue 4, 2005, Pages 1699-1704

Flux problem for a certain class of two-dimensional domains

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21244455631     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/18/4/016     Document Type: Article
Times cited : (9)

References (14)
  • 1
    • 4143059700 scopus 로고
    • Existence of solutions to the nonhomogeneous steady Navier-Stokes equations
    • Amick C J 1984 Existence of solutions to the nonhomogeneous steady Navier-Stokes equations Indiana Univ. Math. J. 33 817-30
    • (1984) Indiana Univ. Math. J. , vol.33 , Issue.6 , pp. 817-830
    • Amick, C.J.1
  • 2
    • 21244447003 scopus 로고
    • Note on the flux problem for stationary incompressible Navier-Stokes equations in domains with multiply connected boundary
    • Borchers W and Pileckas K 1994 Note on the flux problem for stationary incompressible Navier-Stokes equations in domains with multiply connected boundary Acta Appl. Math. 37 21-30
    • (1994) Acta Appl. Math. , vol.37 , Issue.1-2 , pp. 21-30
    • Borchers, W.1    Pileckas, K.2
  • 3
    • 0346997444 scopus 로고    scopus 로고
    • On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
    • Clopeau T, Mikelić A and Robert R 1998 On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions Nonlinearity 11 1625-36
    • (1998) Nonlinearity , vol.11 , Issue.6 , pp. 1625-1636
    • Clopeau, T.1    Mikelić, A.2    Robert, R.3
  • 6
    • 0011402423 scopus 로고
    • Ein allgemeiner Endlichkeitssatz der Hydrodynamik
    • Hopf E 1941 Ein allgemeiner Endlichkeitssatz der Hydrodynamik Math. Ann. 117 764-75
    • (1941) Math. Ann. , vol.117 , Issue.1 , pp. 764-775
    • Hopf, E.1
  • 7
    • 0039086775 scopus 로고
    • On spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries
    • Kapitanskii L V and Pileckas K I 1994 On spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries Proc. Steklov Math. Inst. 159 3-34
    • (1994) Proc. Steklov Math. Inst. , vol.159 , pp. 3-34
    • Kapitanskii, L.V.1    Pileckas, K.I.2
  • 8
    • 34250521951 scopus 로고
    • On classical solutions of the two-dimensional non-stationary Euler equation
    • Kato T 1967 On classical solutions of the two-dimensional non-stationary Euler equation Arch. Rational Mech. Anal. 25 188-200
    • (1967) Arch. Rational Mech. Anal. , vol.25 , Issue.3 , pp. 188-200
    • Kato, T.1
  • 11
    • 4143124995 scopus 로고    scopus 로고
    • Perturbation of Navier-Stokes flow in an annular domain with non-vanishing outflow condition
    • Morimoto H and Ukai S 1996 Perturbation of Navier-Stokes flow in an annular domain with non-vanishing outflow condition J. Math. Sci. Univ. Tokyo 3 73-82
    • (1996) J. Math. Sci. Univ. Tokyo , vol.3 , pp. 73-82
    • Morimoto, H.1    Ukai, S.2
  • 12
    • 0142168379 scopus 로고    scopus 로고
    • On the inviscid limit of the Navier-Stokes equations for flows with large flux
    • Mucha P B 2003 On the inviscid limit of the Navier-Stokes equations for flows with large flux Nonlinearity 16 1715-32
    • (2003) Nonlinearity , vol.16 , Issue.5 , pp. 1715-1732
    • Mucha, P.B.1
  • 13
    • 21244452703 scopus 로고    scopus 로고
    • The Navier-Stokes equations and the maximum principle
    • Mucha P B 2004 The Navier-Stokes equations and the maximum principle Int. Math. Res. Not. 67 3585-605
    • (2004) Int. Math. Res. Not. , vol.2004 , Issue.67 , pp. 3585-3605
    • Mucha, P.B.1
  • 14
    • 21244466713 scopus 로고    scopus 로고
    • On cylindrical symmetric flows through pipe-like domains
    • Mucha P B 2004 On cylindrical symmetric flows through pipe-like domains J. Diff. Eqns 201 304-23
    • (2004) J. Diff. Eqns , vol.201 , Issue.2 , pp. 304-323
    • Mucha, P.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.