메뉴 건너뛰기




Volumn 24, Issue 3, 1996, Pages 1388-1407

Some universal results on the behavior of increments of partial sums

Author keywords

Increments of partial sums; Maximal inequalities; Quantile transformation; Universal law of the iterated logarithm

Indexed keywords


EID: 0030371765     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1065725186     Document Type: Article
Times cited : (23)

References (15)
  • 3
    • 0001377740 scopus 로고
    • How big are the increments of a Wiener process?
    • CSÖRGO, M. and RÉVÉSZ, P. (1979). How big are the increments of a Wiener process? Ann. Probab. 7 731-737.
    • (1979) Ann. Probab. , vol.7 , pp. 731-737
    • Csörgo, M.1    Révész, P.2
  • 5
    • 25344443136 scopus 로고
    • A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables
    • CSÖRGO, S., HÄUSLER, E. and MASON, D. M. (1988a). A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables. Adv. in Appl. Math. 9 259-333.
    • (1988) Adv. in Appl. Math. , vol.9 , pp. 259-333
    • Csörgo, S.1    Häusler, E.2    Mason, D.M.3
  • 6
    • 0000459923 scopus 로고
    • The asymptotic distribution of trimmed sums
    • CSÖRGO, S., HÄUSLER, E. and MASON, D. M. (1988b). The asymptotic distribution of trimmed sums. Ann. Probab. 16 672-699.
    • (1988) Ann. Probab. , vol.16 , pp. 672-699
    • Csörgo, S.1    Häusler, E.2    Mason, D.M.3
  • 8
    • 0039523070 scopus 로고
    • A universal chung-type law of the iterated logarithm
    • EINMAHL, U. and MASON, D. M. (1994). A universal Chung-type law of the iterated logarithm. Ann. Probab. 22 1803-1825.
    • (1994) Ann. Probab. , vol.22 , pp. 1803-1825
    • Einmahl, U.1    Mason, D.M.2
  • 9
    • 0001519213 scopus 로고
    • Some results on increments of the wiener process with applications to lag sums of i.i.d. random variables
    • HANSON, D. L. and RUSSO, R. P. (1983). Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables. Ann. Probab. 11 609-623.
    • (1983) Ann. Probab. , vol.11 , pp. 609-623
    • Hanson, D.L.1    Russo, R.P.2
  • 11
    • 0000668746 scopus 로고
    • Toward a universal law of the iterated logarithm. I
    • KLASS, M. (1976). Toward a universal law of the iterated logarithm. I. Z. Wahrsch. Verw. Gebiete. 36 165-178.
    • (1976) Z. Wahrsch. Verw. Gebiete. , vol.36 , pp. 165-178
    • Klass, M.1
  • 12
    • 0000400695 scopus 로고
    • Limit theorems for delayed sums
    • LAI, T. L. (1974). Limit theorems for delayed sums. Ann. Probab. 2 432-440.
    • (1974) Ann. Probab. , vol.2 , pp. 432-440
    • Lai, T.L.1
  • 13
    • 0040708405 scopus 로고
    • A universal one-sided law of the iterated logarithm
    • MASON, D. M. (1994). A universal one-sided law of the iterated logarithm. Ann. Probab. 22 1826-1837.
    • (1994) Ann. Probab. , vol.22 , pp. 1826-1837
    • Mason, D.M.1
  • 14
    • 0002058266 scopus 로고
    • General one-sided laws of the iterated logarithm
    • PRUITT, W. E. (1981). General one-sided laws of the iterated logarithm. Ann. Probab. 9 1-48.
    • (1981) Ann. Probab. , vol.9 , pp. 1-48
    • Pruitt, W.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.