메뉴 건너뛰기




Volumn 12, Issue 2-3, 2005, Pages 117-125

Conservative perturbations of positive definite Hamiltonian matrices

Author keywords

Eigenvalues; Hamiltonian matrices; Perturbations

Indexed keywords


EID: 20744440809     PISSN: 10705325     EISSN: None     Source Type: Journal    
DOI: 10.1002/nla.409     Document Type: Article
Times cited : (5)

References (12)
  • 2
    • 0000010902 scopus 로고
    • A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations
    • Rosen I, Wang C. A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM Journal on Matrix Analysis and Applications 1992; 32:514-541.
    • (1992) SIAM Journal on Matrix Analysis and Applications , vol.32 , pp. 514-541
    • Rosen, I.1    Wang, C.2
  • 4
    • 0000902795 scopus 로고    scopus 로고
    • Canonical forms for Hamiltonian and symplectic matrices and pencils
    • Lin W, Mehrmann V, Xu H. Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra and Its Applications 1999; 302-303:469-533.
    • (1999) Linear Algebra and Its Applications , vol.302-303 , pp. 469-533
    • Lin, W.1    Mehrmann, V.2    Xu, H.3
  • 5
    • 0034753339 scopus 로고    scopus 로고
    • Symplectic balancing of Hamiltonian matrices
    • Benner P. Symplectic balancing of Hamiltonian matrices. SIAM Journal on Scientific Computing 2001; 22(5): 1885-1904.
    • (2001) SIAM Journal on Scientific Computing , vol.22 , Issue.5 , pp. 1885-1904
    • Benner, P.1
  • 6
    • 0040689412 scopus 로고    scopus 로고
    • An implicit restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem
    • Benner P, Faßbender H. An implicit restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra and Its Applications 1997; 263:75-111.
    • (1997) Linear Algebra and Its Applications , vol.263 , pp. 75-111
    • Benner, P.1    Faßbender, H.2
  • 9
    • 0000059741 scopus 로고
    • A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix
    • Van Loan C. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra and its Applications 1984; 16:233-251.
    • (1984) Linear Algebra and Its Applications , vol.16 , pp. 233-251
    • Van Loan, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.