-
1
-
-
9744231393
-
Periodicity in a logistic type system with several delays
-
F.D. Chen, and J.L. Shi Periodicity in a logistic type system with several delays Comput. Math. Appl. 48 2004 35 44
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 35-44
-
-
Chen, F.D.1
Shi, J.L.2
-
2
-
-
4544235730
-
Periodic solutions for p-Laplacian Liénard equation with a deviating argument
-
W.S. Cheung, and J.L. Ren Periodic solutions for p -Laplacian Liénard equation with a deviating argument Nonlinear Anal. TMA 59 2004 107 120
-
(2004)
Nonlinear Anal. TMA
, vol.59
, pp. 107-120
-
-
Cheung, W.S.1
Ren, J.L.2
-
3
-
-
9344243570
-
On the existence of periodic solutions for p-Laplacian generalized Liénard equation
-
W.S. Cheung, and J.L. Ren On the existence of periodic solutions for p -Laplacian generalized Liénard equation Nonlinear Anal. TMA 60 2004 65 75
-
(2004)
Nonlinear Anal. TMA
, vol.60
, pp. 65-75
-
-
Cheung, W.S.1
Ren, J.L.2
-
4
-
-
4544317880
-
N
-
X.L. Fan, and X.Y. Han Existence and multiplicity of solutions for p (x) -Laplacian equations in R N Nonlinear Anal. TMA 59 2004 173 188
-
(2004)
Nonlinear Anal. TMA
, vol.59
, pp. 173-188
-
-
Fan, X.L.1
Han, X.Y.2
-
5
-
-
20444492176
-
On a periodic Lotka-Volterra system with several delays
-
M.J. Gai, B. Shi, and S.R. Yang On a periodic Lotka-Volterra system with several delays Ann. Differential Equations 18 2002 1 13
-
(2002)
Ann. Differential Equations
, vol.18
, pp. 1-13
-
-
Gai, M.J.1
Shi, B.2
Yang, S.R.3
-
7
-
-
3042853406
-
An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian
-
W.G. Ge, and J.L. Ren An extension of Mawhin's continuation theorem and its application to boundary value problems with a p -Laplacian Nonlinear Anal. TMA 58 2004 477 488
-
(2004)
Nonlinear Anal. TMA
, vol.58
, pp. 477-488
-
-
Ge, W.G.1
Ren, J.L.2
-
8
-
-
0041791127
-
On the existence of 2π-periodic solutions of Duffing type equation x″(t)+g(x(t-τ))=p(t)
-
X.K. Huang, and Z.G. Xiang On the existence of 2 π -periodic solutions of Duffing type equation x ″ (t) + g (x (t - τ)) = p (t) Chinese Sci. Bull. 39 1 1994 201 203 (in Chinese)
-
(1994)
Chinese Sci. Bull.
, vol.39
, Issue.1
, pp. 201-203
-
-
Huang, X.K.1
Xiang, Z.G.2
-
9
-
-
0042793260
-
Periodic solutions of a second order differential equation with deviating argument
-
S.P. Lu, and W.G. Ge Periodic solutions of a second order differential equation with deviating argument Acta Math. Sinica 45 2002 811 818 (in Chinese)
-
(2002)
Acta Math. Sinica
, vol.45
, pp. 811-818
-
-
Lu, S.P.1
Ge, W.G.2
-
10
-
-
0042513665
-
Periodic solutions for a kind of second order differential equations with multiple deviating arguments
-
S.P. Lu, and W.G. Ge Periodic solutions for a kind of second order differential equations with multiple deviating arguments Appl. Math. Comput. 146 2003 195 209
-
(2003)
Appl. Math. Comput.
, vol.146
, pp. 195-209
-
-
Lu, S.P.1
Ge, W.G.2
-
11
-
-
0348207565
-
Periodic solution for a kind of Liénard equation with a deviating argument
-
S.P. Lu, and W.G. Ge Periodic solution for a kind of Liénard equation with a deviating argument J. Math. Anal. Appl. 289 2004 231 243
-
(2004)
J. Math. Anal. Appl.
, vol.289
, pp. 231-243
-
-
Lu, S.P.1
Ge, W.G.2
-
12
-
-
4344603720
-
Periodic solutions of neutral differential equation with multiple deviating arguments
-
S.P. Lu, and W.G. Ge Periodic solutions of neutral differential equation with multiple deviating arguments Appl. Math. Comput. 156 2004 705 717
-
(2004)
Appl. Math. Comput.
, vol.156
, pp. 705-717
-
-
Lu, S.P.1
Ge, W.G.2
-
13
-
-
0032210594
-
Coincidence degree and periodic solutions of Duffing equations
-
S.W. Ma, Z.C. Wang, and J.S. Yu Coincidence degree and periodic solutions of Duffing equations Nonlinear Anal. TMA 34 1998 443 460
-
(1998)
Nonlinear Anal. TMA
, vol.34
, pp. 443-460
-
-
Ma, S.W.1
Wang, Z.C.2
Yu, J.S.3
-
14
-
-
21744457995
-
The existence of positive solutions for the one-dimensional p -Laplacian
-
J.Y. Wang The existence of positive solutions for the one-dimensional p -Laplacian Proc. Amer. Math. Soc. 125 1997 2275 2283
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 2275-2283
-
-
Wang, J.Y.1
-
15
-
-
7544245843
-
Positive solutions for a class of nonlinear delay equations
-
Z.H. Yang Positive solutions for a class of nonlinear delay equations Nonlinear Anal. TMA 59 2004 1013 1031
-
(2004)
Nonlinear Anal. TMA
, vol.59
, pp. 1013-1031
-
-
Yang, Z.H.1
|