메뉴 건너뛰기




Volumn 60, Issue 1, 2005, Pages 65-75

On the existence of periodic solutions for p-Laplacian generalized Liénard equation

Author keywords

Deviating argument; Mawhin's continuation theorem; Periodic solution

Indexed keywords

CONFORMAL MAPPING; FUNCTIONS; INTEGRAL EQUATIONS; MATHEMATICAL OPERATORS; NONLINEAR EQUATIONS; PROBLEM SOLVING; THEOREM PROVING;

EID: 9344243570     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2004.08.021     Document Type: Article
Times cited : (55)

References (10)
  • 1
    • 84968476553 scopus 로고
    • Multiple solutions for the p-Laplacian under global non-resonance
    • M.A. Del Pino, R.F. Manásevich, Multiple solutions for the p-Laplacian under global non-resonance, Proc. Amer. Math. Soc. 112 (1991) 131-138.
    • (1991) Proc. Amer. Math. Soc. , vol.112 , pp. 131-138
    • Del Pino, M.A.1    Manásevich, R.F.2
  • 2
    • 0003048449 scopus 로고
    • Existence and multiple of solutions with prescribed period for a second order quasi-linear ordinary differential equation
    • M.A. Del Pino, R.F. Manásevich, A. Murua, Existence and multiple of solutions with prescribed period for a second order quasi-linear ordinary differential equation, Nonlinear Anal. TMA 18 (1992) 79-92.
    • (1992) Nonlinear Anal. TMA , vol.18 , pp. 79-92
    • Del Pino, M.A.1    Manásevich, R.F.2    Murua, A.3
  • 3
    • 0000875765 scopus 로고
    • Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities
    • C. Fabry, D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Ist. Univ. Trieste. 24 (1992) 207-227.
    • (1992) Rend. Ist. Univ. Trieste. , vol.24 , pp. 207-227
    • Fabry, C.1    Fayyad, D.2
  • 5
    • 0041791127 scopus 로고
    • On the existence of 2π-periodic solutions of duffing type equation x″(t) + gx(t -t) = p(t)
    • in Chinese
    • X. Huang, Z. Xiang, On the existence of 2π-periodic solutions of Duffing type equation x″(t) + g(x(t -t) = p(t), Chinese Sci. Bull: 39 (1994) 201-203 (in Chinese).
    • (1994) Chinese Sci. Bull , vol.39 , pp. 201-203
    • Huang, X.1    Xiang, Z.2
  • 6
    • 0032117230 scopus 로고    scopus 로고
    • Multiplicity results for periodic solutions of a second order quasi-linear ODE with asymmetric nonlinearities
    • B. Liu, Multiplicity results for periodic solutions of a second order quasi-linear ODE with asymmetric nonlinearities, Nonlinear Anal. TMA 33 (1998) 139-160.
    • (1998) Nonlinear Anal. TMA , vol.33 , pp. 139-160
    • Liu, B.1
  • 7
    • 0042513665 scopus 로고    scopus 로고
    • Periodic solutions for a kind of second order differential equations with multiple deviating arguments
    • S. Lu, W. Ge, Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Appl. Math. Comput. 146 (2003) 195-209.
    • (2003) Appl. Math. Comput. , vol.146 , pp. 195-209
    • Lu, S.1    Ge, W.2
  • 8
    • 0000317073 scopus 로고    scopus 로고
    • An abstract theorem at resonance and its applications
    • S. Ma, Z. Wang, J. Yu, An abstract theorem at resonance and its applications, J. Differ. Equations 145 (1998) 274-294.
    • (1998) J. Differ. Equations , vol.145 , pp. 274-294
    • Ma, S.1    Wang, Z.2    Yu, J.3
  • 9
    • 0032210594 scopus 로고    scopus 로고
    • Coincidence degree and periodic solutions of Duffing equations
    • S. Ma, Z. Wang, J. Yu, Coincidence degree and periodic solutions of Duffing equations, Nonlinear Analysis TMA 34 (1998) 443-460.
    • (1998) Nonlinear Analysis TMA , vol.34 , pp. 443-460
    • Ma, S.1    Wang, Z.2    Yu, J.3
  • 10
    • 0001688579 scopus 로고    scopus 로고
    • Periodic solutions for nonlinear systems with p-Laplacian like operarors
    • R.F. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian like operarors, J. Differ. Equations 145 (1998) 367-393.
    • (1998) J. Differ. Equations , vol.145 , pp. 367-393
    • Manásevich, R.F.1    Mawhin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.