-
1
-
-
0003434416
-
-
(University Science, Mill Valley, Calif.)
-
A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
-
(1986)
Lasers
-
-
Siegman, A.E.1
-
2
-
-
35949011534
-
Diffraction-free beams
-
J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1499-1501
-
-
Durnin, J.1
Miceli, J.J.2
Eberly, J.H.3
-
3
-
-
0001442483
-
Iwasawa decomposition in first-order optics: Universal treatment of shape-invariant propagation for coherent and partially coherent beams
-
R. Simon and N. Mukunda, "Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams," J. Opt. Soc. Am. A 15, 2146-2155 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 2146-2155
-
-
Simon, R.1
Mukunda, N.2
-
4
-
-
0003972070
-
-
(Cambridge U. Press, Cambridge, UK)
-
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
-
(1999)
Principles of Optics, 7th Ed.
-
-
Born, M.1
Wolf, E.2
-
5
-
-
0001631957
-
Intuitive explanation of the phase anomaly of focused light beams
-
R. W. Boyd, "Intuitive explanation of the phase anomaly of focused light beams," J. Opt. Soc. Am. 70, 877-880 (1980).
-
(1980)
J. Opt. Soc. Am.
, vol.70
, pp. 877-880
-
-
Boyd, R.W.1
-
6
-
-
0000064372
-
Bargmann invariant and the geometry of the Gouy effect
-
R. Simon and N. Mukunda, "Bargmann invariant and the geometry of the Gouy effect," Phys. Rev. Lett. 70, 880-883 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 880-883
-
-
Simon, R.1
Mukunda, N.2
-
7
-
-
0000192112
-
Topological phase in Gaussian beam optics
-
D. Subbarao, "Topological phase in Gaussian beam optics," Opt. Lett. 20, 2162-2164 (1995).
-
(1995)
Opt. Lett.
, vol.20
, pp. 2162-2164
-
-
Subbarao, D.1
-
8
-
-
0000382623
-
Physical origin of the Gouy phase shift
-
S. Feng and H. G. Winful, "Physical origin of the Gouy phase shift," Opt. Lett. 26, 485-487 (2001).
-
(2001)
Opt. Lett.
, vol.26
, pp. 485-487
-
-
Feng, S.1
Winful, H.G.2
-
9
-
-
84894013477
-
-
note
-
Throughout the paper we set κ = 1, κ being the wave number. This means that in all the subsequent formulas the variable z is intended to be the propagation distance divided by the wave number.
-
-
-
-
10
-
-
84975661885
-
Partially coherent fields, the transport-of-intensity equation, and phase uniqueness
-
T. E. Gureyev, A. Roberts, and K. A. Nugent, "Partially coherent fields, the transport-of-intensity equation, and phase uniqueness," J. Opt. Soc. Am. A 12, 1942-1946 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 1942-1946
-
-
Gureyev, T.E.1
Roberts, A.2
Nugent, K.A.3
-
11
-
-
0000858643
-
Quantum theory in hydrodynamical form
-
E. Madelung, "Quantum theory in hydrodynamical form," Z. Phys. 40, 332-336 (1926).
-
(1926)
Z. Phys.
, vol.40
, pp. 332-336
-
-
Madelung, E.1
-
14
-
-
0348250340
-
Converting states of a particle under uniform or elastic forces into free-particle states
-
C. Bernardi, F. Gori, and M. Santarsiero, "Converting states of a particle under uniform or elastic forces into free-particle states," Eur. J. Phys. 16, 58-62 (1995).
-
(1995)
Eur. J. Phys.
, vol.16
, pp. 58-62
-
-
Bernardi, C.1
Gori, F.2
Santarsiero, M.3
-
15
-
-
84894022008
-
-
note
-
We follow the standard convention by which ρ is negative for a diverging lens.
-
-
-
-
16
-
-
0028483920
-
A simple realization of fractional Fourier transformation and relation to harmonic oscillator Green's function
-
G. S. Agarwal and R. Simon, "A simple realization of fractional Fourier transformation and relation to harmonic oscillator Green's function," Opt. Commun. 110, 23-26 (1994).
-
(1994)
Opt. Commun.
, vol.110
, pp. 23-26
-
-
Agarwal, G.S.1
Simon, R.2
-
17
-
-
0011742056
-
Fractional Fourier transform and Fresnel transform
-
F. Gori, M. Santarsiero, and V. Bagini, "Fractional Fourier transform and Fresnel transform," Atti Fond. Giorgio Ronchi 51, 387-390 (1994).
-
(1994)
Atti Fond. Giorgio Ronchi
, vol.51
, pp. 387-390
-
-
Gori, F.1
Santarsiero, M.2
Bagini, V.3
-
18
-
-
0027652533
-
Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum
-
R. Simon, K. Sundar, and N. Mukunda, "Twisted Gaussian Schell-Model beams. I. Symmetry structure and normal-mode spectrum," J. Opt. Soc. Am. A 10, 2008-2016 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2008-2016
-
-
Simon, R.1
Sundar, K.2
Mukunda, N.3
|