-
5
-
-
0034351063
-
-
P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler and E. Artacho: Phys. Rev. Lett. 85 (2000) 4992.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4992
-
-
De Pablo, P.J.1
Moreno-Herrero, F.2
Colchero, J.3
Gomez Herrero, J.4
Herrero, P.5
Baro, A.M.6
Ordejon, P.7
Soler, J.M.8
Artacho, E.9
-
6
-
-
45849156047
-
-
K.-H. Yoo, D. H. Ha, J.-O. Lee, J. W. Park, J. Kim, J. J. Kim, H.-Y. Lee, T. Kawai and H. Y. Choi: Phys. Rev. Lett. 87 (2001) 198102.
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 198102
-
-
Yoo, K.-H.1
Ha, D.H.2
Lee, J.-O.3
Park, J.W.4
Kim, J.5
Kim, J.J.6
Lee, H.-Y.7
Kawai, T.8
Choi, H.Y.9
-
7
-
-
0035847088
-
-
A. Yu. Kasumov, M. Kodak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov and H. Bouchiat: Science 291 (2001) 280.
-
(2001)
Science
, vol.291
, pp. 280
-
-
Kasumov, A.Yu.1
Kodak, M.2
Gueron, S.3
Reulet, B.4
Volkov, V.T.5
Klinov, D.V.6
Bouchiat, H.7
-
8
-
-
0035896666
-
-
A. Rakitin, P. Aich, C. Papadopoulos, Yu. Kobzar, A. S. Vedeneev, J. S. Lee and J. M. Xu: Phys. Rev. Lett. 86 (2001) 3670.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 3670
-
-
Rakitin, A.1
Aich, P.2
Papadopoulos, C.3
Kobzar, Yu.4
Vedeneev, A.S.5
Lee, J.S.6
Xu, J.M.7
-
9
-
-
18744428020
-
-
Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox and N. P. Ong: Phys. Rev. Lett. 89 (2002) 198102.
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 198102
-
-
Zhang, Y.1
Austin, R.H.2
Kraeft, J.3
Cox, E.C.4
Ong, N.P.5
-
10
-
-
79956055200
-
-
H.-Y. Lee, H. Tanaka, Y. Otsuka, K.-H. Yoo, J.-O. Lee and T. Kawai: Appl. Phys. Lett. 80 (2002) 1670.
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 1670
-
-
Lee, H.-Y.1
Tanaka, H.2
Otsuka, Y.3
Yoo, K.-H.4
Lee, J.-O.5
Kawai, T.6
-
16
-
-
1542287266
-
-
E. Artacho, M. Machado, D. Sanchez-Portal, P. Ordejon and J. M. Soler: Mol. Phys. 101 (2003) 1587.
-
(2003)
Mol. Phys.
, vol.101
, pp. 1587
-
-
Artacho, E.1
Machado, M.2
Sanchez-Portal, D.3
Ordejon, P.4
Soler, J.M.5
-
17
-
-
0038739103
-
-
J. P. Lewis, T. E. Cheatham, III, E. B. Starkov, H. Wang and O. F. Sankey: J. Phys. Chem. B 107 (2003) 2581.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 2581
-
-
Lewis, J.P.1
Cheatham III, T.E.2
Starkov, E.B.3
Wang, H.4
Sankey, O.F.5
-
18
-
-
20044374155
-
-
note
-
4 K), the carrier concentration is negligible at room temperature (∼300 K) and carrier motion requires an external field to be activated.
-
-
-
-
20
-
-
20044390527
-
-
note
-
The Gaussian98 program package was used for unrestricted Hartree-Fock (UHF) calculations for DNA molecules in the presence of hydrated and anhydrous cations. The 6-31 G(d) basis set was employed. For the case of the hydrated divalent cation systems, the atomic positions of the DNA were fixed, while those of the divalent cation and of the water molecules were optimized. For the case of systems including an anhydrous cation, the atomic coordinates of the guanine bases and both termini of the DNA chain were fixed during the structural relaxation, whereas the positions of the other atoms were optimized. The charge of the whole system was +1e (i.e., the summation of -1e coming from the formal charge of an anionic phosphate and +2e from that of a cation, Mg, Ca, or Zn).
-
-
-
-
21
-
-
20044368608
-
-
note
-
The SIESTA 0.12 program was employed for the DFT calculations of DNA with a hydrated Mg cation. Troullier-Martins pseudopotentials and the generalized gradients approximation (GGA) on the exchange-correlation functional after Perdew, Burke and Ernzerhof, were used. The confinement energy of numerical double-zeta pseudoatomic orbitals with polarized functions was chosen to be 50 meV. The value of the cutoff energy was 120 Ry. The initial atomic coordinates of a guasonine dimer were extracted from the atomic coordinates of poly(dG)-poly(dC), taking the A-form or B-form of the DNA. For the case of hydrated divalent cation systems, the atomic positions of the DNA were fixed, while those of the divalent cation and of the water molecules were optimized.
-
-
-
-
22
-
-
20044393458
-
-
note
-
2+ in our energy scale. Therefore our conclusions hold also in the case of the double-stranded structure in long DNA chains.
-
-
-
-
23
-
-
20044393785
-
-
note
-
The HOMO is mainly located at guasonine base molecules and the LUMO is located at hydrated Mg in the nonmagnetic state. In the ferromagnetic and antiferromagnetic state, the SOMO is located at the anhydrous Mg, while the LUMO is located at the guasonine base. Details are shown in Fig. 1 for the nonmagnetic and ferromagnetic cases.
-
-
-
-
24
-
-
20044377566
-
-
note
-
z = 1).
-
-
-
-
25
-
-
20044390711
-
-
note
-
Reference 16 gives 270 meV for the HOMO band width for optimized periodic acid poly(dG)-poly(dC) in GGA. Unoptimized structures can give much larger band widthes. The band width must be discussed according to the experimental structure.
-
-
-
-
26
-
-
18544406574
-
-
T. Uchihashi, N. Choi, M. Tanigawa, M. Ashino, Y. Sugawara, H. Nishijima, S. Akital, Y. Nakayama, H. Tokumoto, K. Yokoyama, S. Morita and M. Ishikawa: Jpn. J. Appl. Phys. 39 (2001) L887.
-
(2001)
Jpn. J. Appl. Phys.
, vol.39
-
-
Uchihashi, T.1
Choi, N.2
Tanigawa, M.3
Ashino, M.4
Sugawara, Y.5
Nishijima, H.6
Akital, S.7
Nakayama, Y.8
Tokumoto, H.9
Yokoyama, K.10
Morita, S.11
Ishikawa, M.12
-
30
-
-
0038390088
-
-
and references therein
-
Y. Asai: J. Phys. Chem. 107 (2003) 4647, and references therein.
-
(2003)
J. Phys. Chem.
, vol.107
, pp. 4647
-
-
Asai, Y.1
|