메뉴 건너뛰기




Volumn 354, Issue 1-4, 2005, Pages 547-557

On stochastic global optimization of one-dimensional functions

Author keywords

Diffusive process; Global optimization; Monte Carlo; Potential energy surface

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; GLOBAL OPTIMIZATION; POTENTIAL ENERGY; PROBLEM SOLVING; RANDOM PROCESSES; REFLECTION;

EID: 19944381505     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2005.02.028     Document Type: Article
Times cited : (15)

References (55)
  • 19
    • 0035852818 scopus 로고    scopus 로고
    • M. Amen Int. J. Prod. Econ. 69 2001 255 264 Int. J. Prod. Econ. 64 (2000) 187-195; Int. J. Prod. Econ. 68 (2000) 1-14
    • (2001) Int. J. Prod. Econ. , vol.69 , pp. 255-264
    • Amen, M.1
  • 22
    • 0004576555 scopus 로고
    • Global minimization of nonconvex energy functions: Molecular conformation and protein folding
    • dIMACS workshop, March 20-21, 1995
    • D.S. Panos, M. Pardalos, G. Xue (Eds.), Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, vol. 23 of DIMACS - Series in Discrete Mathematics and Theoretical Computer Science, 1995, dIMACS workshop, March 20-21, 1995.
    • (1995) DIMACS - Series in Discrete Mathematics and Theoretical Computer Science , vol.23
    • Panos, D.S.1    Pardalos, M.2    Xue, G.3
  • 48
    • 19944418096 scopus 로고    scopus 로고
    • note
    • The local minimization was illustrated by solving the trajectory of an overdamped particle that follows the gradient of the function f (x) = x 2 + 30 · (cos (3 x)) 2. Much more sophisticated local minimizers [42] lead to complicated basins of attraction than in this simple example.
  • 52
    • 19944379659 scopus 로고    scopus 로고
    • note
    • We used the dbrent-method of [42] as local minimizer and averaged over 1000 configurations. As the original Shubert-function is much too simple for this approach, we modified it to include more local minima by applying basin-hopping to the modified Shubert-function s 50 (x) := ∑ k = 1 k = 50 k sin ((k + 1) x + k).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.