메뉴 건너뛰기




Volumn 38, Issue 9, 2005, Pages 1444-1456

A multiobjective genetic algorithm for obtaining the optimal size of a recurrent neural network for grammatical inference

Author keywords

Grammatical inference; Multiobjective genetic algorithm; Recurrent neural networks

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; GENETIC ALGORITHMS; LEARNING ALGORITHMS; RECURRENT NEURAL NETWORKS; SELF ORGANIZING MAPS; SET THEORY; TOPOLOGY;

EID: 19944375499     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2004.03.026     Document Type: Article
Times cited : (32)

References (41)
  • 1
    • 0020815483 scopus 로고
    • Inductive inference: Theory and methods
    • D. Angluin, and C.H. Smitch Inductive inference theory and methods ACM Comput. Surv. 15 3 1983 237
    • (1983) ACM Comput. Surv. , vol.15 , Issue.3 , pp. 237
    • Angluin, D.1    Smitch, C.H.2
  • 5
    • 19944407353 scopus 로고    scopus 로고
    • Gramatical inference: Algorithms and applications
    • Springer, Berlin, September
    • A.L. Oliveira, (Ed.), Gramatical Inference: Algorithms and Applications, Lecture Notes in Computer Science, vol. 1891, Springer, Berlin, September 2000.
    • (2000) Lecture Notes in Computer Science , vol.1891
    • Oliveira, A.L.1
  • 6
    • 0028202641 scopus 로고
    • An evolutionary algorithm that constructs recurrent neural networks
    • P.J. Angeline, G.M. Saunders, and J.B. Pollack An evolutionary algorithm that constructs recurrent neural networks IEEE Trans. Neural Networks 5 1 1994 54 65
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.1 , pp. 54-65
    • Angeline, P.J.1    Saunders, G.M.2    Pollack, J.B.3
  • 7
    • 19944375686 scopus 로고    scopus 로고
    • Fuzzy grammatical inference using neural network
    • A. Blanco, M. Delgado, and M.C. Pegalajar Fuzzy grammatical inference using neural network Mathware Soft Comput. 5 2-3 1998 133 140
    • (1998) Mathware Soft Comput. , vol.5 , Issue.2-3 , pp. 133-140
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 8
    • 0033686963 scopus 로고    scopus 로고
    • Extracting rules from a (fuzzy/crisp) recurrent neural networks using a self-organizing map
    • A. Blanco, M. Delgado, and M.C. Pegalajar Extracting rules from a (fuzzy/crisp) recurrent neural networks using a self-organizing map Int. J. Intell. Syst. 15 7 2000 595 621
    • (2000) Int. J. Intell. Syst. , vol.15 , Issue.7 , pp. 595-621
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 9
    • 0033943206 scopus 로고    scopus 로고
    • A genetic algorithm to obtain the optimal recurrent neural network
    • A. Blanco, M. Delgado, and M.C. Pegalajar A genetic algorithm to obtain the optimal recurrent neural network Int. J. Approx. Reasoning 23 2000 67 83
    • (2000) Int. J. Approx. Reasoning , vol.23 , pp. 67-83
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 10
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • A. Blanco, M. Delgado, and M.C. Pegalajar A real-coded genetic algorithm for training recurrent neural networks Neural Networks 14 2001 93 105
    • (2001) Neural Networks , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 12
    • 84902137336 scopus 로고    scopus 로고
    • Speech recognition using fuzzy second-order recurrent neural networks, Connectionist models of neurons, learning processes and artificial intelligence
    • Granada, Spain, June 13-15, Proceedings, Part I
    • A. Blanco, M. Delgado, M.C. Pegalajar, I. Requena, Speech recognition using fuzzy second-order recurrent neural networks, Connectionist models of neurons, learning processes and artificial intelligence, Sixth International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, Granada, Spain, June 13-15, Proceedings, Part I, 2001, pp. 285.
    • (2001) Sixth International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 , pp. 285
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3    Requena, I.4
  • 15
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks: Problems with recurrent cascade correlation and a simple solution
    • C.L. Giles, D. Chen, G.Z. Sun, H. Chen, Y.C. Lee, and M.W. Goudreau Constructive learning of recurrent neural networks problems with recurrent cascade correlation and a simple solution IEEE Trans. Neural Networks 6 4 1995 829
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.4 , pp. 829
    • Giles, C.L.1    Chen, D.2    Sun, G.Z.3    Chen, H.4    Lee, Y.C.5    Goudreau, M.W.6
  • 16
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second order recurrent neural networks
    • C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C. Lee Learning and extracting finite state automata with second order recurrent neural networks Neural Comput. 4 1992 393 405
    • (1992) Neural Comput. , vol.4 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 17
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • C.L. Giles, and C. Omlin Pruning recurrent neural networks for improved generalization performance IEEE Trans. Neural Network 5 5 1994 848
    • (1994) IEEE Trans. Neural Network , vol.5 , Issue.5 , pp. 848
    • Giles, C.L.1    Omlin, C.2
  • 18
    • 0029880174 scopus 로고    scopus 로고
    • Extraction of rules from discrete-time recurrent neural network
    • C.W. Omlin, and C.L. Giles Extraction of rules from discrete-time recurrent neural network Neural Networks 9 1 1996 41 52
    • (1996) Neural Networks , vol.9 , Issue.1 , pp. 41-52
    • Omlin, C.W.1    Giles, C.L.2
  • 19
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Z. Zeng, R. Goodman, and P. Smyth Learning finite state machines with self-clustering recurrent networks Neural Comput. 5 6 1993 976 990
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 976-990
    • Zeng, Z.1    Goodman, R.2    Smyth, P.3
  • 20
    • 0028396478 scopus 로고
    • Discrete recurrent neural network, Neural Networks for grammatical inference
    • A. Zeng, R. Goodman, and P. Smyth Discrete recurrent neural network, Neural Networks for grammatical inference IEEE Trans. Neural Networks 5 2 1994 320 330
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 320-330
    • Zeng, A.1    Goodman, R.2    Smyth, P.3
  • 21
    • 0002493084 scopus 로고    scopus 로고
    • Speech pattern discrimination and multi-layered perceptrons
    • H. Bourlard, and C. Wellekens Speech pattern discrimination and multi-layered perceptrons Comput. Speech Language 3 1998 1 19
    • (1998) Comput. Speech Language , vol.3 , pp. 1-19
    • Bourlard, H.1    Wellekens, C.2
  • 23
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • T. Sejnowski, and C. Rosenberg Parallel networks that learn to pronounce English text Complex Syst. 1 1987 145 168
    • (1987) Complex Syst. , vol.1 , pp. 145-168
    • Sejnowski, T.1    Rosenberg, C.2
  • 24
    • 0000795302 scopus 로고    scopus 로고
    • Capacity control in classifiers for pattern recognition
    • Neural Networks for Signal Processing II
    • S. Solla, Capacity control in classifiers for pattern recognition, in: Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop, pp. 255-266.
    • Proceedings of the 1992 IEEE Workshop , pp. 255-266
    • Solla, S.1
  • 27
    • 84988558982 scopus 로고    scopus 로고
    • A hybrid connectonist-symbolic approach to regular grammatical inference based on neural learning and hierarchical clustering
    • R.C. Carrasco, J. Oncina (Eds.) Springer, Berlin
    • R. Alquézar, A. Sanfeliu, A hybrid connectonist-symbolic approach to regular grammatical inference based on neural learning and hierarchical clustering, in: R.C. Carrasco, J. Oncina (Eds.), Grammatical Inference and Applications LNA, vol. 862, Springer, Berlin, pp. 203-211.
    • Grammatical Inference and Applications LNA , vol.862 , pp. 203-211
    • Alquézar, R.1    Sanfeliu, A.2
  • 28
    • 0002096988 scopus 로고
    • Reducing the size of the nondominated set, Pruning by clustering
    • J.N. Morse Reducing the size of the nondominated set, Pruning by clustering Comput. Oper. Res. 7 1-2 1980 55 66
    • (1980) Comput. Oper. Res. , vol.7 , Issue.1-2 , pp. 55-66
    • Morse, J.N.1
  • 29
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • Morgan Kaufmann Los Altos, CA
    • S. Fahlman The recurrent cascade-correlation architecture Advances in Neural Information Processing Systems vol.3 1991 Morgan Kaufmann Los Altos, CA 180 196
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 180-196
    • Fahlman, S.1
  • 32
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • J. Schmidhuber A fixed size storage O (n 3) time complexity learning algorithm for fully recurrent continually running networks Neural Comput. 4 1992 243 248
    • (1992) Neural Comput. , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 33
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams, and D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Comput. 1 1989 270 280
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 34
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R.J. Williams, and J. Peng An efficient gradient-based algorithm for on-line training of recurrent network trajectories Neural Comput. 2 1990 491 501
    • (1990) Neural Comput. , vol.2 , pp. 491-501
    • Williams, R.J.1    Peng, J.2
  • 35
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • P. Mozer, Smolensky, Skeletonization: a technique for trimming the fat from a network via relevance assessment, Connection Sci. 11 (1989) 3-26.
    • (1989) Connection Sci. , vol.11 , pp. 3-26
    • Mozer, P.1    Smolensky2
  • 36
    • 0033318858 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • E. Zizler, and T. Lothar Multi-objective evolutionary algorithms a comparative case study and the strength Pareto approach IEEE Trans. Evol. Comput. 3 4 1999 257 271
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Zizler, E.1    Lothar, T.2
  • 37
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • K. Deb Multi-objective genetic algorithms problem difficulties and construction of test problems Evol. Comput. 7 3 1999 205 230
    • (1999) Evol. Comput. , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 38
    • 0001403575 scopus 로고
    • Genetic algorithms for real parameter optimisation, Foundations of genetic algorithms
    • G.J.E. Rawlin Morgan Kaufmann Los Altos, CA
    • A. Wright Genetic algorithms for real parameter optimisation, Foundations of genetic algorithms G.J.E. Rawlin First Workshop on the Foundations of Genetics Algorithms and Classifier Systems 1990 Morgan Kaufmann Los Altos, CA 205 218
    • (1990) First Workshop on the Foundations of Genetics Algorithms and Classifier Systems , pp. 205-218
    • Wright, A.1
  • 39
    • 0011374085 scopus 로고
    • Reducing the Pareto optimal set in multicriteria optimization
    • M.A. Rosenman, and J.S. Gero Reducing the Pareto optimal set in multicriteria optimization Eng. Optim. 8 1985 189 206
    • (1985) Eng. Optim. , vol.8 , pp. 189-206
    • Rosenman, M.A.1    Gero, J.S.2
  • 40
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proc. IEEE 9 1990 1464 1480
    • (1990) Proc. IEEE , vol.9 , pp. 1464-1480
    • Kohonen, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.