메뉴 건너뛰기




Volumn 108, Issue 1-2 SPEC. ISS., 2005, Pages 700-707

Integrated microfluidic system for the simultaneous determination of ammonia, creatinine, and urea

Author keywords

Air gap; Ammonia; Creatinine; Differential mode; Flow channel; Urea

Indexed keywords

CHANNEL FLOW; CHEMICAL SENSORS; ELECTRODES; ELECTROLYTES; ENZYME IMMOBILIZATION; PH EFFECTS; SOLUTIONS; UREA;

EID: 19744366758     PISSN: 09254005     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.snb.2004.12.032     Document Type: Conference Paper
Times cited : (28)

References (14)
  • 1
    • 0342748348 scopus 로고    scopus 로고
    • Microfabricated amperometric creatine and creatinine biosensors
    • M.B. Mǎdǎraş, I.C. Popescu, S. Ufer, and R.P. Buck Microfabricated amperometric creatine and creatinine biosensors Anal. Chim. Acta 319 1996 335 345
    • (1996) Anal. Chim. Acta , vol.319 , pp. 335-345
    • Mǎdǎraş, M.B.1    Popescu, I.C.2    Ufer, S.3    Buck, R.P.4
  • 2
    • 0032811469 scopus 로고    scopus 로고
    • Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system
    • E.J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, and M. Aizawa Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system Anal. Chim. Acta 394 1999 225 231
    • (1999) Anal. Chim. Acta , vol.394 , pp. 225-231
    • Kim, E.J.1    Haruyama, T.2    Yanagida, Y.3    Kobatake, E.4    Aizawa, M.5
  • 3
    • 0034771293 scopus 로고    scopus 로고
    • Fabrication of a sensing module using micromachined biosensors
    • H. Suzuki, H. Arakawa, and I. Karube Fabrication of a sensing module using micromachined biosensors Biosens. Bioelectron. 16 2001 725 733
    • (2001) Biosens. Bioelectron. , vol.16 , pp. 725-733
    • Suzuki, H.1    Arakawa, H.2    Karube, I.3
  • 4
    • 0022489010 scopus 로고
    • Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors
    • Y. Hanazato, M. Nakako, and S. Shiono Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors IEEE Trans. Electron Devices ED-33 1986 47 51
    • (1986) IEEE Trans. Electron Devices , vol.33 , pp. 47-51
    • Hanazato, Y.1    Nakako, M.2    Shiono, S.3
  • 5
    • 46149139707 scopus 로고
    • A microsensor for urea based on an ion-selective field effect transistor
    • I. Karube, E. Tamiya, J.M. Dicks, and M. Gotoh A microsensor for urea based on an ion-selective field effect transistor Anal. Chim. Acta 185 1986 195 200
    • (1986) Anal. Chim. Acta , vol.185 , pp. 195-200
    • Karube, I.1    Tamiya, E.2    Dicks, J.M.3    Gotoh, M.4
  • 6
    • 0022664625 scopus 로고
    • A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors
    • S. Nakamoto, N. Ito, T. Kuriyama, and J. Kimura A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors Sens. Actuators 13 1988 165 172
    • (1988) Sens. Actuators , vol.13 , pp. 165-172
    • Nakamoto, S.1    Ito, N.2    Kuriyama, T.3    Kimura, J.4
  • 7
    • 0030866115 scopus 로고    scopus 로고
    • Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing
    • J. Muñoz, C. Jimenez, A. Bratov, J. Bartrolí, S. Alegret, and C. Dominguez Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing Biosens. Bioelectron. 12 1997 577 585
    • (1997) Biosens. Bioelectron. , vol.12 , pp. 577-585
    • Muñoz, J.1    Jimenez, C.2    Bratov, A.3    Bartrolí, J.4    Alegret, S.5    Dominguez, C.6
  • 8
    • 0344223277 scopus 로고    scopus 로고
    • Polyurethane-acrylate photocurable polymeric membrane for ion-sensitive field-effect transistor based urea biosensors
    • C. Puig-Lleixà, C. Jiménez, J. Alonso, and J. Bartrolí Polyurethane-acrylate photocurable polymeric membrane for ion-sensitive field-effect transistor based urea biosensors Anal. Chim. Acta 389 1999 179 188
    • (1999) Anal. Chim. Acta , vol.389 , pp. 179-188
    • Puig-Lleixà, C.1    Jiménez, C.2    Alonso, J.3    Bartrolí, J.4
  • 9
    • 0033598186 scopus 로고    scopus 로고
    • A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip
    • A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip Talanta 50 1999 219 226
    • (1999) Talanta , vol.50 , pp. 219-226
    • Senillou, A.1    Jaffrezic-Renault, N.2    Martelet, C.3    Cosnier, S.4
  • 10
    • 0033646110 scopus 로고    scopus 로고
    • Performance characteristics of a micro urea sensor employing a micromachined carbon dioxide electrode
    • H. Suzuki, H. Arakawa, and I. Karube Performance characteristics of a micro urea sensor employing a micromachined carbon dioxide electrode Electroanalysis 12 2000 1327 1333
    • (2000) Electroanalysis , vol.12 , pp. 1327-1333
    • Suzuki, H.1    Arakawa, H.2    Karube, I.3
  • 11
    • 0034308297 scopus 로고    scopus 로고
    • Creatinine biosensors: Principles and designs
    • A.J. Killard, and M.R. Smyth Creatinine biosensors: principles and designs Trends Biotechnol. 18 2000 433 437
    • (2000) Trends Biotechnol. , vol.18 , pp. 433-437
    • Killard, A.J.1    Smyth, M.R.2
  • 12
    • 1342285677 scopus 로고    scopus 로고
    • Microfabricated flow system for ammonia and creatinine with an air-gap structure
    • H. Suzuki, and Y. Matsugi Microfabricated flow system for ammonia and creatinine with an air-gap structure Sens. Actuators B 98 2004 101 111
    • (2004) Sens. Actuators B , vol.98 , pp. 101-111
    • Suzuki, H.1    Matsugi, Y.2
  • 13
    • 1342275397 scopus 로고    scopus 로고
    • Micromachined ammonia gas-sensing electrode and its application to a micro urea sensor
    • H. Suzuki, and Y. Watanabe Micromachined ammonia gas-sensing electrode and its application to a micro urea sensor Trans. IEE Jpn. 121-E 2001 440 444
    • (2001) Trans. IEE Jpn. , vol.121 , pp. 440-444
    • Suzuki, H.1    Watanabe, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.