메뉴 건너뛰기




Volumn 182, Issue 1, 2005, Pages 188-210

Existence theorems for the one-dimensional singular p-Laplacian equation with a nonlinear boundary condition

Author keywords

One dimensional p Laplacian; Positive solution; Upper and lower solution

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; DIFFERENTIAL EQUATIONS; NONLINEAR EQUATIONS; THEOREM PROVING;

EID: 19644361852     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2004.10.022     Document Type: Article
Times cited : (15)

References (16)
  • 1
    • 0037809675 scopus 로고    scopus 로고
    • Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities
    • R. Agarwal H. Lü D. O'Regan Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities Appl. Math. Comput. 143 2003 15-38
    • (2003) Appl. Math. Comput. , vol.143 , pp. 15-38
    • Agarwal, R.1    Lü, H.2    O'Regan, D.3
  • 2
    • 0344549780 scopus 로고    scopus 로고
    • A necessary and sufficient condition for the existence of positive solutions to the singular p-Laplacian
    • R.P. Agarwal H. Lü D. O'Regan A necessary and sufficient condition for the existence of positive solutions to the singular p-Laplacian Z. Anal. Anwend. 22 2003 689-709
    • (2003) Z. Anal. Anwend. , vol.22 , pp. 689-709
    • Agarwal, R.P.1    Lü, H.2    O'Regan, D.3
  • 3
    • 0000369452 scopus 로고
    • A singular nonlinear boundary value problem: Membrane response of a spherical cap
    • J. Baxley A singular nonlinear boundary value problem: Membrane response of a spherical cap SIAM J. Appl. Math. 48 1988 497-505
    • (1988) SIAM J. Appl. Math. , vol.48 , pp. 497-505
    • Baxley, J.1
  • 5
    • 0038116148 scopus 로고    scopus 로고
    • An existence result for a class of superlinear p-Laplacian semipositone systems
    • D.D. Hai R. Shivaji An existence result for a class of superlinear p-Laplacian semipositone systems Differential Integral Equations 14 2001 231-240
    • (2001) Differential Integral Equations , vol.14 , pp. 231-240
    • Hai, D.D.1    Shivaji, R.2
  • 6
    • 1942456643 scopus 로고    scopus 로고
    • Multiple positive solutions to a class of singular boundary value problems for the one-dimensional p-Laplacian
    • D. Jiang X. Xu Multiple positive solutions to a class of singular boundary value problems for the one-dimensional p-Laplacian Comput. Math. Appl. 47 2004 667-681
    • (2004) Comput. Math. Appl. , vol.47 , pp. 667-681
    • Jiang, D.1    Xu, X.2
  • 7
    • 19644386827 scopus 로고    scopus 로고
    • Existence of positive solutions for p-Laplacian singular boundary value problems
    • C. Li W. Ge Existence of positive solutions for p -Laplacian singular boundary value problems Indian J. Pure Appl. Math. 34 2003 187-203
    • (2003) Indian J. Pure Appl. Math. , vol.34 , pp. 187-203
    • Li, C.1    Ge, W.2
  • 8
    • 0037114103 scopus 로고    scopus 로고
    • Multiple positive solutions for the one-dimensional singular p-Laplacian
    • H. Lü D. O'Regan C. Zhong Multiple positive solutions for the one-dimensional singular p-Laplacian Appl. Math. Comput. 133 2002 407-722
    • (2002) Appl. Math. Comput. , vol.133 , pp. 407-722
    • Lü, H.1    O'Regan, D.2    Zhong, C.3
  • 9
    • 0001588110 scopus 로고    scopus 로고
    • A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian
    • H. Lü C. Zhong A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian Appl. Math. Lett. 14 2001 189-194
    • (2001) Appl. Math. Lett. , vol.14 , pp. 189-194
    • Lü, H.1    Zhong, C.2
  • 10
    • 0001662218 scopus 로고
    • Some general existence principle and results for (φ(y′))′ = qf(t, y, y′), 0 < t < 1
    • D. O'Regan Some general existence principle and results for (φ (y′))′ = qf(t, y, y′), 0 < t < 1 SIAM J. Math. Anal. 24 1993 648-668
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 648-668
    • O'Regan, D.1
  • 11
    • 21444445119 scopus 로고    scopus 로고
    • Boundary value problems singular in the solution variable with nonlinear boundary data
    • D. O'Regan Boundary value problems singular in the solution variable with nonlinear boundary data Proc. Edinburgh Math. Soc. 39 1996 505-523
    • (1996) Proc. Edinburgh Math. Soc. , vol.39 , pp. 505-523
    • O'Regan, D.1
  • 12
    • 0035425791 scopus 로고    scopus 로고
    • Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap
    • D. O'Regan Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap Nonlinear Anal. 47 2001 1163-1174
    • (2001) Nonlinear Anal. , vol.47 , pp. 1163-1174
    • O'Regan, D.1
  • 13
    • 0030215022 scopus 로고    scopus 로고
    • A singular boundary value problem for the one-dimensional p-Laplacian
    • J. Wang W. Gao A singular boundary value problem for the one-dimensional p-Laplacian J. Math. Anal. Appl. 201 1996 851-866
    • (1996) J. Math. Anal. Appl. , vol.201 , pp. 851-866
    • Wang, J.1    Gao, W.2
  • 14
    • 19644390870 scopus 로고    scopus 로고
    • The exact number of solutions for p-Laplacian in some singular boundary value problems
    • Z. Wei C. Pang The exact number of solutions for p-Laplacian in some singular boundary value problems Chinese Ann. Math. Ser. A 25 2004 207-216
    • (2004) Chinese Ann. Math. Ser. A , vol.25 , pp. 207-216
    • Wei, Z.1    Pang, C.2
  • 15
    • 2642562893 scopus 로고    scopus 로고
    • On the Fredholm alternative for the p-Laplacian
    • X. Yan On the Fredholm alternative for the p-Laplacian Appl. Math. Comput. 153 2004 537-556
    • (2004) Appl. Math. Comput. , vol.153 , pp. 537-556
    • Yan, X.1
  • 16
    • 0001624524 scopus 로고    scopus 로고
    • Positive solutions of one-dimensional singular p-Laplace equations
    • Q. Yao H. Lü Positive solutions of one-dimensional singular p-Laplace equations Acta Math. Sinica 41 6 1998 1253-1264
    • (1998) Acta Math. Sinica , vol.41 , Issue.6 , pp. 1253-1264
    • Yao, Q.1    Lü, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.