메뉴 건너뛰기




Volumn 201, Issue 3, 1996, Pages 851-866

A singular boundary value problem for the one-dimensional p-Laplacian

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030215022     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.1996.0288     Document Type: Article
Times cited : (67)

References (7)
  • 1
    • 0001328382 scopus 로고
    • Pairs of positive solutions for the one-dimensional p-Laplacian
    • 1. C. De Coster, Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 23 (1994), 669-681.
    • (1994) Nonlinear Anal. , vol.23 , pp. 669-681
    • De Coster, C.1
  • 3
    • 38249004025 scopus 로고
    • Time mappings and multiplicity of solutions for the one-dimensional p-Laplacian
    • 3. R. Manasevich and F. Zanolin, Time mappings and multiplicity of solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 21, No. 4 (1993), 269-291.
    • (1993) Nonlinear Anal. , vol.21 , Issue.4 , pp. 269-291
    • Manasevich, R.1    Zanolin, F.2
  • 5
    • 0001662218 scopus 로고
    • Some general existence principles and results for [φ(y′)]′ = q(t)f(t,y,y′), (0 < t < 1)
    • 5. D. O'Regan, Some general existence principles and results for [φ(y′)]′ = q(t)f(t,y,y′), (0 < t < 1), SIAM J. Math. Anal. 24 (1993), 648-668.
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 648-668
    • O'Regan, D.1
  • 6
    • 49249143125 scopus 로고
    • A nonlinear singular boundary value problem
    • 6. S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), 897-904.
    • (1979) Nonlinear Anal. , vol.3 , pp. 897-904
    • Taliaferro, S.1
  • 7
    • 4243975060 scopus 로고
    • A principle on existence of solutions to the nonlinear second order equation [φ(y′)]′ = q(x)f(x,y,y′), (0 < x < 1)
    • 7. J. Wang, A principle on existence of solutions to the nonlinear second order equation [φ(y′)]′ = q(x)f(x,y,y′), (0 < x < 1), Acta Sci. Natur. Univ. Jilin. 2 (1994), 11-15.
    • (1994) Acta Sci. Natur. Univ. Jilin. , vol.2 , pp. 11-15
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.