메뉴 건너뛰기




Volumn , Issue , 2004, Pages 99-105

A bayesian framework for regularized SVM parameter estimation

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN FRAMEWORKS; LINEAR CLASSIFIERS; MAPPING FUNCTIONS; SUPPORT VECTOR MACHINES (SMV);

EID: 19544392137     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2004.10094     Document Type: Conference Paper
Times cited : (2)

References (15)
  • 1
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Department of Information and Computer Sciences, University of California, Irvine
    • C. Blake and C. Merz. UCI Repository of machine learning databases. Technical Report http://www.ics.uci.edu/~mlearn/MLRepository.html, Department of Information and Computer Sciences, University of California, Irvine, 1998.
    • (1998) Technical Report
    • Blake, C.1    Merz, C.2
  • 3
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin. Radius margin bounds for support vector machines with the RBF kernel. Neural Computation, 15:2643-2681, 2003.
    • (2003) Neural Computation , vol.15 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 3142615000 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Data Mining Institute, University of Wisconsin
    • G. Fung and O. Mangasarian. A feature selection Newton method for support vector machine classification. Technical Report DMI-02-03, Data Mining Institute, University of Wisconsin, 2002.
    • (2002) Technical Report , vol.DMI-02-03
    • Fung, G.1    Mangasarian, O.2
  • 7
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Image, Speech and Intelligent Systems Research Group, University of Southampton
    • S. Gunn. Support vector machines for classification and regression. Technical Report ISIS-1-98, Image, Speech and Intelligent Systems Research Group, University of Southampton, 1998.
    • (1998) Technical Report , vol.ISIS-1-98
    • Gunn, S.1
  • 8
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networks, 13:1225-1229, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1225-1229
    • Keerthi, S.1
  • 10
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery, 6:259-275, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 11
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. MacKay. Bayesian interpolation. Neural Computation, 4:415-447, 1992.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.1
  • 13
    • 19544370667 scopus 로고    scopus 로고
    • Probabilistic interpretation and Bayesian methods for support vector machines
    • P. Sollich. Probabilistic interpretation and Bayesian methods for support vector machines. Proc. Intl. Conf. Artificial Neural Networks (ICANN'99), pages 177-182, 1999.
    • (1999) Proc. Intl. Conf. Artificial Neural Networks (ICANN'99) , pp. 177-182
    • Sollich, P.1
  • 14
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis
    • T. van Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. de Moor, and J. Vandewalle. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Computation, 14:1115-1147, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.