-
1
-
-
0003408496
-
UCI repository of machine learning databases
-
Department of Information and Computer Sciences, University of California, Irvine
-
C. Blake and C. Merz. UCI Repository of machine learning databases. Technical Report http://www.ics.uci.edu/~mlearn/MLRepository.html, Department of Information and Computer Sciences, University of California, Irvine, 1998.
-
(1998)
Technical Report
-
-
Blake, C.1
Merz, C.2
-
2
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46:131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
3
-
-
0141430928
-
Radius margin bounds for support vector machines with the RBF kernel
-
K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin. Radius margin bounds for support vector machines with the RBF kernel. Neural Computation, 15:2643-2681, 2003.
-
(2003)
Neural Computation
, vol.15
, pp. 2643-2681
-
-
Chung, K.-M.1
Kao, W.-C.2
Sun, C.-L.3
Wang, L.-L.4
Lin, C.-J.5
-
4
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
3142615000
-
A feature selection Newton method for support vector machine classification
-
Data Mining Institute, University of Wisconsin
-
G. Fung and O. Mangasarian. A feature selection Newton method for support vector machine classification. Technical Report DMI-02-03, Data Mining Institute, University of Wisconsin, 2002.
-
(2002)
Technical Report
, vol.DMI-02-03
-
-
Fung, G.1
Mangasarian, O.2
-
7
-
-
0003425664
-
Support vector machines for classification and regression
-
Image, Speech and Intelligent Systems Research Group, University of Southampton
-
S. Gunn. Support vector machines for classification and regression. Technical Report ISIS-1-98, Image, Speech and Intelligent Systems Research Group, University of Southampton, 1998.
-
(1998)
Technical Report
, vol.ISIS-1-98
-
-
Gunn, S.1
-
8
-
-
0036738840
-
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
-
S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networks, 13:1225-1229, 2002.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 1225-1229
-
-
Keerthi, S.1
-
10
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery, 6:259-275, 2002.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
11
-
-
0001025418
-
Bayesian interpolation
-
D. MacKay. Bayesian interpolation. Neural Computation, 4:415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 415-447
-
-
MacKay, D.1
-
13
-
-
19544370667
-
Probabilistic interpretation and Bayesian methods for support vector machines
-
P. Sollich. Probabilistic interpretation and Bayesian methods for support vector machines. Proc. Intl. Conf. Artificial Neural Networks (ICANN'99), pages 177-182, 1999.
-
(1999)
Proc. Intl. Conf. Artificial Neural Networks (ICANN'99)
, pp. 177-182
-
-
Sollich, P.1
-
14
-
-
0036582564
-
Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis
-
T. van Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. de Moor, and J. Vandewalle. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Computation, 14:1115-1147, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1115-1147
-
-
Van Gestel, T.1
Suykens, J.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
|