메뉴 건너뛰기




Volumn , Issue , 2004, Pages 130-137

Generation of attribute value taxonomies from data for data-driven construction of accurate and compact classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFIERS; DATA REDUCTION; DATABASE SYSTEMS; INFORMATION RETRIEVAL; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; LOGIC PROGRAMMING; SEMANTICS;

EID: 19544364462     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (30)
  • 8
  • 10
    • 0034133769 scopus 로고    scopus 로고
    • Clustering categorical data: An approach based on dynamical systems
    • D. Gibson, J. M. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamical systems. VLDB Journal: Very Large Data Bases, 8(3-4):222-236, 2000.
    • (2000) VLDB Journal: Very Large Data Bases , vol.8 , Issue.3-4 , pp. 222-236
    • Gibson, D.1    Kleinberg, J.M.2    Raghavan, P.3
  • 11
    • 0002479811 scopus 로고    scopus 로고
    • Exploration of the power of attribute-oriented induction in data mining
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. AIII Press/MIT Press
    • J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. 49n U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining. AIII Press/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Han, J.1    Fu, Y.2
  • 12
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial intelligence, 36:177-221, 1988.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 13
    • 0037083574 scopus 로고    scopus 로고
    • Automated discovery of concise predictive rules for intrusion detection
    • G. Helmer, J. S. K. Wong, V. G. Honavar, and L. Miller. Automated discovery of concise predictive rules for intrusion detection. J. Syst. Softw., 60(3):165-175, 2002.
    • (2002) J. Syst. Softw. , vol.60 , Issue.3 , pp. 165-175
    • Helmer, G.1    Wong, J.S.K.2    Honavar, V.G.3    Miller, L.4
  • 14
    • 0003471413 scopus 로고    scopus 로고
    • Advances in high performance knowledge representation
    • University of Maryland Institute for Advanced Computer Studies Dept. of Computer Science
    • J. Hendler, K. Stoffel, and M. Taylor. Advances in high performance knowledge representation. Technical Report CS-TR-3672, University of Maryland Institute for Advanced Computer Studies Dept. of Computer Science, 1996.
    • (1996) Technical Report , vol.CS-TR-3672
    • Hendler, J.1    Stoffel, K.2    Taylor, M.3
  • 15
    • 23044521957 scopus 로고    scopus 로고
    • Applications of data mining to electronic commerce
    • R. Kohavi and F. Provost. Applications of data mining to electronic commerce. Data Min. Knowl. Discov., 5(1-2):5-10, 2001.
    • (2001) Data Min. Knowl. Discov. , vol.5 , Issue.1-2 , pp. 5-10
    • Kohavi, R.1    Provost, F.2
  • 17
    • 8844261754 scopus 로고
    • The role of prior knowledge in inductive learning
    • M. Pazzani and D. Kibler. The role of prior knowledge in inductive learning. Machine Learning, 9:54-97, 1992.
    • (1992) Machine Learning , vol.9 , pp. 54-97
    • Pazzani, M.1    Kibler, D.2
  • 24
    • 19544392472 scopus 로고    scopus 로고
    • A target centric ontology for intrusion detection: Using DAML+OIL to classify intrusive behaviors
    • January
    • J. L. Undercoffer, A. Joshi, T. Finin, and J. Pinkston. A Target Centric Ontology for Intrusion Detection: Using DAML+OIL to Classify Intrusive Behaviors. Knowledge Engineering Review, January 2004.
    • (2004) Knowledge Engineering Review
    • Undercoffer, J.L.1    Joshi, A.2    Finin, T.3    Pinkston, J.4
  • 25
    • 0042235504 scopus 로고    scopus 로고
    • Automated data-driven discovery of motif-based protein function classifiers
    • X. Wang, D. Schroeder, D. Dobbs, and V. G. Honavar. Automated data-driven discovery of motif-based protein function classifiers. Inf. Sci., 155(1-2):1-18, 2003.
    • (2003) Inf. Sci. , vol.155 , Issue.1-2 , pp. 1-18
    • Wang, X.1    Schroeder, D.2    Dobbs, D.3    Honavar, V.G.4
  • 27
    • 17444429200 scopus 로고    scopus 로고
    • Identification of surface residues involved in protein-protein interaction - A support vector machine approach
    • A. Abraham, K. Franke, and M. Koppen, editors
    • C. Yan, D. Dobbs, and V. Honavar. Identification of surface residues involved in protein-protein interaction - a support vector machine approach. In A. Abraham, K. Franke, and M. Koppen, editors, Intelligent Systems Design and Applications (ISDA-03), pages 53-62, 2003.
    • (2003) Intelligent Systems Design and Applications (ISDA-03) , pp. 53-62
    • Yan, C.1    Dobbs, D.2    Honavar, V.3
  • 29
    • 19544364846 scopus 로고    scopus 로고
    • AVT-NBL: An algorithm for learning compact and accurate naive bayes classifiers from attribute value taxonomies and data
    • To appear
    • J. Zhang and V. Honavar. AVT-NBL: An algorithm for learning compact and accurate naive bayes classifiers from attribute value taxonomies and data. In International Conference on Data Mining (ICDM 2004), 2004. To appear.
    • (2004) International Conference on Data Mining (ICDM 2004)
    • Zhang, J.1    Honavar, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.