메뉴 건너뛰기




Volumn 1, Issue , 2003, Pages 353-360

Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA ACQUISITION; EDUCATION; LINEAR SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; SPEECH RECOGNITION; VECTORS;

EID: 1942420852     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (29)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E., Schapire, R., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 113-141.
    • (2000) Journal of Machine Learning Research , pp. 113-141
    • Allwein, E.1    Schapire, R.2    Singer, Y.3
  • 2
    • 0022890536 scopus 로고
    • Maximum mutual information estimation of hidden Markov model parameters for speech recognition
    • 1986
    • Bahl, L., Brown, P., de Souza, P., & (1986)., R. M. (1986). Maximum mutual information estimation of hidden Markov model parameters for speech recognition. ICASSP (pp. 49-52).
    • (1986) ICASSP , pp. 49-52
    • Bahl, L.1    Brown, P.2    De Souza, P.3    M., R.4
  • 3
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
    • Baum, L., & Eagon, J. (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bulletin of the AMS, 73, 360-363.
    • (1967) Bulletin of the AMS , vol.73 , pp. 360-363
    • Baum, L.1    Eagon, J.2
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector classifiers
    • Fung, G., & Mangasarian, O. (2001). Proximal support vector classifiers. KDD (pp. 77-86).
    • (2001) KDD , pp. 77-86
    • Fung, G.1    Mangasarian, O.2
  • 12
    • 2142830711 scopus 로고    scopus 로고
    • Maximum conditional likelihood via bound maximization and the cem algorithm
    • Jebara, T., & Pentland, A. (1998). Maximum conditional likelihood via bound maximization and the cem algorithm. Neural Information Processing Systems 11.
    • (1998) Neural Information Processing Systems , vol.11
    • Jebara, T.1    Pentland, A.2
  • 13
    • 0015000439 scopus 로고
    • Some results on Tchebychean spline functions
    • Kimeldorf, G., & Wahba, G. (1971). Some results on Tchebychean spline functions. J. Math. Anal. Applic., 33, 82-95.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 18
    • 0024076692 scopus 로고
    • On a model-robust training method for speech recognition
    • Nádas, A., Nahamoo, D., & Picheny, M. (1988). On a model-robust training method for speech recognition. IEEE Trans. on ASSP, 36, 1432-6.
    • (1988) IEEE Trans. on ASSP , vol.36 , pp. 1432-1436
    • Nádas, A.1    Nahamoo, D.2    Picheny, M.3
  • 19
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • Ng, A., & Jordan, M. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. NIPS.
    • (2002) NIPS
    • Ng, A.1    Jordan, M.2
  • 21
    • 0028996990 scopus 로고
    • Optimal splitting of HMM Gaussian mixture components with MMIE training
    • Normandin, Y. (1995). Optimal splitting of HMM Gaussian mixture components with MMIE training. ICASSP (pp. 449-52).
    • (1995) ICASSP , pp. 449-452
    • Normandin, Y.1
  • 22
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257-86.
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.1
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 29
    • 0036461035 scopus 로고    scopus 로고
    • Large scale discriminative training of hidden Markov models for speech recognition
    • Woodland, P., & Povey, D. (2002). Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech and Language, 16, 25-47.
    • (2002) Computer Speech and Language , vol.16 , pp. 25-47
    • Woodland, P.1    Povey, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.