메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 584-591

Mixtures of Conditional Maximum Entropy Models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); DATA REDUCTION; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; STATISTICAL METHODS;

EID: 1942420722     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (27)
  • 4
    • 1942514677 scopus 로고    scopus 로고
    • Maximum entropy methods for biological sequence modeling
    • Buehler, E. C., & Ungar, L. H. (2001). Maximum entropy methods for biological sequence modeling. BIOKDD (pp. 60-64).
    • (2001) BIOKDD , pp. 60-64
    • Buehler, E.C.1    Ungar, L.H.2
  • 7
    • 0001573124 scopus 로고
    • Generalized iterative scaling for log-linear models
    • Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. Annals of Mathematical Statistics, 43, 1470-1480.
    • (1972) Annals of Mathematical Statistics , vol.43 , pp. 1470-1480
    • Darroch, J.N.1    Ratcliff, D.2
  • 8
    • 0032265557 scopus 로고    scopus 로고
    • Mixed logit with repeated choices: Households' choices of appliance efficiency level
    • David, R., & Kenneth, T. (1998). Mixed logit with repeated choices: Households' choices of appliance efficiency level. Review of Economics and Statistics, 80, 1-11.
    • (1998) Review of Economics and Statistics , vol.80 , pp. 1-11
    • David, R.1    Kenneth, T.2
  • 13
    • 0002260533 scopus 로고
    • Where do we stand on maximum entropy?
    • Cambridge MA: MIT Press
    • Jaynes, E. T. (1979). Where do we stand on maximum entropy? The Maximum Entropy Formalism (pp. 15-118). Cambridge MA: MIT Press.
    • (1979) The Maximum Entropy Formalism , pp. 15-118
    • Jaynes, E.T.1
  • 15
    • 0029306995 scopus 로고
    • Stat-Log: Comparison of classification algorithms on large real-world problems
    • King, R., Feng, C., & Sutherland, A. (1995). Stat-Log: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9(3), 289-333.
    • (1995) Applied Artificial Intelligence , vol.9 , Issue.3 , pp. 289-333
    • King, R.1    Feng, C.2    Sutherland, A.3
  • 16
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40, 203-228.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 21
    • 1942482527 scopus 로고    scopus 로고
    • Using latent structure of a document collection to improve text classification
    • unpublished commercial project
    • Nigam, K., Popescul, A., & McCallum, A. (2000, unpublished commercial project). Using latent structure of a document collection to improve text classification. Whizbang! Labs, Pittsburgh.
    • (2000) Whizbang! Labs, Pittsburgh
    • Nigam, K.1    Popescul, A.2    McCallum, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.