-
1
-
-
0034840406
-
-
(a) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P. Acc. Chem. Res. 2001, 34, 488.
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 488
-
-
Amendola, V.1
Fabbrizzi, L.2
Mangano, C.3
Pallavicini, P.4
-
4
-
-
0034614090
-
-
(d) Koumura, N.; Geertsema, E. M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 12005.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 12005
-
-
Koumura, N.1
Geertsema, E.M.2
Meetsma, A.3
Feringa, B.L.4
-
5
-
-
0034596923
-
-
(e) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348.
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 3348
-
-
Balzani, V.1
Credi, A.2
Raymo, F.M.3
Stoddart, J.F.4
-
6
-
-
0034839247
-
-
(f) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433.
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 433
-
-
Pease, A.R.1
Jeppesen, J.O.2
Stoddart, J.F.3
Luo, Y.4
Collier, C.P.5
Heath, J.R.6
-
7
-
-
0034387401
-
-
(g) Cardona, C. M.; Mendoza, S.; Kaifer, A. E. Chem. Soc. Rev. 2000, 29, 37.
-
(2000)
Chem. Soc. Rev.
, vol.29
, pp. 37
-
-
Cardona, C.M.1
Mendoza, S.2
Kaifer, A.E.3
-
10
-
-
0034595660
-
-
(j) Ichimura, K.; Oh, S.-K.; Nakagawa, M. Science 2000, 288, 1624.
-
(2000)
Science
, vol.288
, pp. 1624
-
-
Ichimura, K.1
Oh, S.-K.2
Nakagawa, M.3
-
11
-
-
0033552937
-
-
(k) Mao, C.; Sun, W.; Shen, Z.; Seeman, N. C. Nature 1999, 397, 144.
-
(1999)
Nature
, vol.397
, pp. 144
-
-
Mao, C.1
Sun, W.2
Shen, Z.3
Seeman, N.C.4
-
15
-
-
0035800406
-
-
(b) Heinze, J.; Willmann, C.; Bauerle, P. Angew. Chem., Int. Ed. 2001, 40, 2861.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 2861
-
-
Heinze, J.1
Willmann, C.2
Bauerle, P.3
-
16
-
-
0034834627
-
-
(c) Yashima, E.; Maeda, K.; Sato, S, J. Am. Chem. Soc. 2001, 123, 8159.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 8159
-
-
Yashima, E.1
Maeda, K.2
Sato, S.3
-
17
-
-
0034597775
-
-
(d) Gittins, D. I.; Bethell, D.; Schiffrin, D. J., Nichols, F. J. Nature 2000, 408, 67.
-
(2000)
Nature
, vol.408
, pp. 67
-
-
Gittins, D.I.1
Bethell, D.2
Schiffrin, D.J.3
Nichols, F.J.4
-
18
-
-
0034681497
-
-
(e) Rathore, R.; Magueres, P. L.; Lindeman, S. V.; Kochi, J. K. Angew. Chem., Int. Ed. 2000, 39, 809.
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 809
-
-
Rathore, R.1
Magueres, P.L.2
Lindeman, S.V.3
Kochi, J.K.4
-
20
-
-
0029757744
-
-
(b) Adams, H.; Carver, F. J.; Hunter, C. A.; Morales, J. C.; Seward, E. M. Angew. Chem., Int. Ed. 1996, 35, 1542.
-
(1996)
Angew. Chem., Int. Ed.
, vol.35
, pp. 1542
-
-
Adams, H.1
Carver, F.J.2
Hunter, C.A.3
Morales, J.C.4
Seward, E.M.5
-
21
-
-
0032483756
-
-
(c) Kim, E.; Paliwal, S.; Wilcox, C. S. J. Am. Chem. Soc. 1998, 120, 11192.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 11192
-
-
Kim, E.1
Paliwal, S.2
Wilcox, C.S.3
-
23
-
-
0000510202
-
-
(e) Hong, B. H.; Lee, J. Y.; Cho, S. J.; Yun, S.; Kim, K. S. J. Org. Chem. 1999, 64, 5661.
-
(1999)
J. Org. Chem.
, vol.64
, pp. 5661
-
-
Hong, B.H.1
Lee, J.Y.2
Cho, S.J.3
Yun, S.4
Kim, K.S.5
-
25
-
-
0034317690
-
-
(g) Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145.
-
(2000)
Chem. Rev.
, vol.100
, pp. 4145
-
-
Kim, K.S.1
Tarakeshwar, P.2
Lee, J.Y.3
-
26
-
-
0000628471
-
-
(h) Hobza et al. J. Am. Chem. Soc. 1994, 116, 3500.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3500
-
-
Hobza1
-
29
-
-
0001571452
-
-
Schladetzky, K. D.; Haque, T. S.; Gellman, S. H. J. Org. Chem. 1995, 60, 4108.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 4108
-
-
Schladetzky, K.D.1
Haque, T.S.2
Gellman, S.H.3
-
31
-
-
0034710516
-
-
(b) Oh, K. S. et al. Org. Lett. 2000, 2, 2679.
-
(2000)
Org. Lett.
, vol.2
, pp. 2679
-
-
Oh, K.S.1
-
32
-
-
0033517034
-
-
(c) Choi, H. S.; Kim, K. S. Angew. Chem., Int. Ed. 1999, 38, 2256; Angew. Chem. 1999, 111, 2400.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 2256
-
-
Choi, H.S.1
Kim, K.S.2
-
33
-
-
0033517034
-
-
(c) Choi, H. S.; Kim, K. S. Angew. Chem., Int. Ed. 1999, 38, 2256; Angew. Chem. 1999, 111, 2400.
-
(1999)
Angew. Chem.
, vol.111
, pp. 2400
-
-
-
34
-
-
0001060066
-
-
(d) Choi, H. S.; Suh, S. B.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12094.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 12094
-
-
Choi, H.S.1
Suh, S.B.2
Cho, S.J.3
Kim, K.S.4
-
38
-
-
0002960857
-
-
(d) Carbacos, O. M.; Weinheimer, C. J.; Lisy, J. M. J. Chem. Phys. 1999, 110, 8429.
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 8429
-
-
Carbacos, O.M.1
Weinheimer, C.J.2
Lisy, J.M.3
-
40
-
-
0035850853
-
-
(b) Hong, B. H.; Bae, S. C.; Lee, C.-W.; Jeong, S.; Kim, K. S. Science 2001, 294, 348.
-
(2001)
Science
, vol.294
, pp. 348
-
-
Hong, B.H.1
Bae, S.C.2
Lee, C.-W.3
Jeong, S.4
Kim, K.S.5
-
41
-
-
0004133516
-
-
Gaussian Inc.: Pittsburgh, PA
-
MP2/6-31+G* calculations for the p-benzoquinone-benzene and the p-benzoquinone dianion-benzene pairs, and MP2/6-31G* calculations for the cyclophane systems using the Gaussian 98 suite of programs (Frisch. M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zarkzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck. A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, L; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L., Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian Inc.: Pittsburgh, PA, 1998).
-
(1998)
Gaussian 98
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zarkzewski, V.G.7
Montgomery Jr., J.A.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, L.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.G.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Head-Gordon, M.55
Replogle, E.S.56
Pople, J.A.57
more..
-
42
-
-
0442264598
-
-
MP2/6-311++G** calculations with MP2/6-31G* zero-point energy correction for the benzene-hydroquinone pair
-
MP2/6-311++G** calculations with MP2/6-31G* zero-point energy correction for the benzene-hydroquinone pair.
-
-
-
-
43
-
-
0442263640
-
-
note
-
2 with all 2796 independent reflections and 217 variables converged to R1 (I > 2σ(I)) = 0.0389, wR2 (all data) = 0.1041, and GOF = 1.604.
-
-
-
-
44
-
-
0442266770
-
-
The transformation of 3 into 1 with the lapse of time was confirmed by the UV spectra as well as the NMR spectra (see Supporting Information)
-
The transformation of 3 into 1 with the lapse of time was confirmed by the UV spectra as well as the NMR spectra (see Supporting Information).
-
-
-
-
45
-
-
0442263637
-
-
The aromatic-aromatic interactions between the stacked benzene-benzene pair and the stacked benzene-hydroquinone pair are almost the same (∼2 kcal/mol) according to ab initio calculations as well as chemistry insights
-
The aromatic-aromatic interactions between the stacked benzene-benzene pair and the stacked benzene-hydroquinone pair are almost the same (∼2 kcal/mol) according to ab initio calculations as well as chemistry insights.
-
-
-
-
46
-
-
0442268241
-
-
note
-
To confirm the conformation of 3, we synthesized 2,11 -dithio[4,4]-metametahydroquinocylophane dimethyl ether 8. The X-ray structure of compound 8 showed that it has a T-shaped conformation (see the Supporting Information).
-
-
-
-
47
-
-
0442263638
-
-
We tried to analyze the conformation of 2 in basic condition containing an aqueous NaOD solution by using the NMR spectroscopy, but it was not possible due to the instability of 2 in this condition
-
We tried to analyze the conformation of 2 in basic condition containing an aqueous NaOD solution by using the NMR spectroscopy, but it was not possible due to the instability of 2 in this condition.
-
-
-
-
48
-
-
0442263639
-
-
note
-
In comparison with 3, 2 has additional electrostatic energy between the quinone dianion and the positively charged H atom in the benzene in favor of the T-shaped conformer. In addition, the T-shaped energy is 9 kcal/mol lower than the stacked one in ab initio calculations (the difference of 9 kcal/mol is much larger than the possible error tolerance of a few kcal/mol).
-
-
-
-
49
-
-
0001198731
-
-
Patai, S., Rappoport, Z., Eds.; Wiley; New York, Chapter 12
-
Chambers, J. Q. In The Chemistry of the Quinonoid Compounds; Patai, S., Rappoport, Z., Eds.; Wiley; New York, 1988; Vol. 2, Chapter 12, pp 719-757 ; 1974; Vol. 1, Chapter 14, pp 737-791.
-
(1988)
The Chemistry of the Quinonoid Compounds
, vol.2
, pp. 719-757
-
-
Chambers, J.Q.1
-
50
-
-
0001298158
-
-
Chapter 14
-
Chambers, J. Q. In The Chemistry of the Quinonoid Compounds; Patai, S., Rappoport, Z., Eds.; Wiley; New York, 1988; Vol. 2, Chapter 12, pp 719-757 ; 1974; Vol. 1, Chapter 14, pp 737-791.
-
(1974)
The Chemistry of the Quinonoid Compounds
, vol.1
, pp. 737-791
-
-
-
51
-
-
0442266763
-
-
We tried to obtain a protonated species, 3, in the presence of the acidic additive, upon electrochemical reduction of 1. However, it resulted in the breakage of thioether linkages
-
We tried to obtain a protonated species, 3, in the presence of the acidic additive, upon electrochemical reduction of 1. However, it resulted in the breakage of thioether linkages.
-
-
-
-
52
-
-
0442268243
-
-
note
-
According to the molecular motional analysis based on our calculations, the present quinocyclophane system can play the role of molecular flipper in solvents by the high-frequency alternating current applied to the cyclic voltammogram. That is, the system can be utilized as a nanomechanical device in solvents. In the case of 1, no solvent molecules exist in a reasonably large space between benzene and quinone rings because of the presence of rich electron clouds which repel the electron clouds of solvent molecules. On the other hand, in the case of 2, solvent molecules surround the benzene ring moiety. Upon reduction, 1 changes to 2. During this conformational change, the benzene ring moves closer to the quinone ring without much disturbing solvent molecules. On the other hand, upon oxidation, 2 changes to 1. For this conformational change, the solvent molecules surrounding the benzene ring are squeezed out from the space between the benzene and quinone rings as these rings stack to each other. This results in a strong thrusting force toward the backward direction. This would let the molecular system move backward by the external alternating electric current. Though the moving distance would be limited to a short distance for the present system, the system could be considered as a preliminary version for the precursor of molecular flipper/vessel.
-
-
-
|