메뉴 건너뛰기




Volumn 33, Issue 1, 2005, Pages 284-306

Bandwidth choice for nonparametric classification

Author keywords

Bayes risk; Bootstrap; Classification error; Cross validation; Discrimination; Error rate; Kernel methods; Nonparametric density estimation

Indexed keywords


EID: 18444375293     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000959     Document Type: Article
Times cited : (61)

References (44)
  • 1
    • 0032363861 scopus 로고    scopus 로고
    • An unsupervised and nonparametric classification procedure based on mixtures with known weights
    • ANCUKIEWICZ, M. (1998). An unsupervised and nonparametric classification procedure based on mixtures with known weights. J. Classification 15 129-141.
    • (1998) J. Classification , vol.15 , pp. 129-141
    • Ancukiewicz, M.1
  • 2
    • 0034293760 scopus 로고    scopus 로고
    • Fast K -nearest-neighbour search algorithm for nonparametric classification
    • BAEK, S. and SUNG, K. M. (2000). Fast K -nearest-neighbour search algorithm for nonparametric classification. Electronics Letters 36 1821-1822.
    • (2000) Electronics Letters , vol.36 , pp. 1821-1822
    • Baek, S.1    Sung, K.M.2
  • 3
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849.
    • (1998) Ann. Statist. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • BREIMAN, L. (2001). Random forests. Machine Learning 45 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 38249022462 scopus 로고
    • Asymptotic estimate of probability of misclassification for discriminant rules based on density estimates
    • CHANDA, K. C. and RUYMGAART, F. H. (1989). Asymptotic estimate of probability of misclassification for discriminant rules based on density estimates. Statist. Probab. Lett. 8 81-88.
    • (1989) Statist. Probab. Lett. , vol.8 , pp. 81-88
    • Chanda, K.C.1    Ruymgaart, F.H.2
  • 6
    • 0014380444 scopus 로고
    • Rates of convergence for nearest neighbor procedures
    • (B. K. Kinariwala and F. F. Kuo, eds.) Univ. Hawaii Press, Honolulu
    • COVER, T. M. (1968). Rates of convergence for nearest neighbor procedures. In Proc. Hawaii International Conference on System Sciences (B. K. Kinariwala and F. F. Kuo, eds.) 413-415. Univ. Hawaii Press, Honolulu.
    • (1968) Proc. Hawaii International Conference on System Sciences , pp. 413-415
    • Cover, T.M.1
  • 7
    • 0020098693 scopus 로고
    • Any discrimination rule can have an arbitrarily bad probability of error for finite sample size
    • DEVROYE, L. (1982). Any discrimination rule can have an arbitrarily bad probability of error for finite sample size. IEEE Trans. Pattern Anal. Machine Intelligence 4 154-157.
    • (1982) IEEE Trans. Pattern Anal. Machine Intelligence , vol.4 , pp. 154-157
    • Devroye, L.1
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • DUDOIT, S., FRIDLYAND, J. and SPEED, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Statist. Assoc. 97 77-87.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 10
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • EFRON, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Amer. Statist. Assoc. 78 316-331.
    • (1983) J. Amer. Statist. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 11
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The .632+ bootstrap method
    • EFRON, B. and TIBSHIRANI, R. (1997). Improvements on cross-validation: The .632+ bootstrap method. J. Amer. Statist. Assoc. 92 548-560.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 12
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • EHRENFEUCHT, A., HAUSSLER, D., KEARNS, M. and VALIANT, L. (1989). A general lower bound on the number of examples needed for learning. Inform. and Comput. 82 247-261.
    • (1989) Inform. and Comput. , vol.82 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 14
    • 0003909532 scopus 로고
    • Discriminatory analysis. Nonparametric discrimination: Consistency properties
    • Project No. 21-49-004, USAF School of Aviation Medicine, Randolph Field, TX
    • FIX, E. and HODGES, J. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. Technical Report No. 4, Project No. 21-49-004, USAF School of Aviation Medicine, Randolph Field, TX.
    • (1951) Technical Report No. 4 , vol.4
    • Fix, E.1    Hodges, J.2
  • 15
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • FRIEDMAN, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Discov. 1 55-77.
    • (1997) Data Min. Knowl. Discov. , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • FRIEDMAN, J. H., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407.
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 0000638595 scopus 로고
    • Large sample optimality of least squares cross-validation in density estimation
    • HALL, P. (1983). Large sample optimality of least squares cross-validation in density estimation. Ann. Statist. 11 1156-1174.
    • (1983) Ann. Statist. , vol.11 , pp. 1156-1174
    • Hall, P.1
  • 22
    • 0000871679 scopus 로고
    • A local cross-validation algorithm
    • HALL, P. and SCHUCANY, W. R. (1989). A local cross-validation algorithm. Statist. Probab. Lett. 8 109-117.
    • (1989) Statist. Probab. Lett. , vol.8 , pp. 109-117
    • Hall, P.1    Schucany, W.R.2
  • 23
    • 0011620130 scopus 로고
    • Nonparametric kernel regression estimation - Optimal choice of bandwidth
    • HÄRDLE, W. and KELLY, G. (1987). Nonparametric kernel regression estimation - optimal choice of bandwidth. Statistics 18 21-35.
    • (1987) Statistics , vol.18 , pp. 21-35
    • Härdle, W.1    Kelly, G.2
  • 25
    • 0036116123 scopus 로고    scopus 로고
    • On weak base hypotheses and their implications for boosting regression and classification
    • JIANG, W. X. (2002). On weak base hypotheses and their implications for boosting regression and classification Ann. Statist. 30 51-73.
    • (2002) Ann. Statist. , vol.30 , pp. 51-73
    • Jiang, W.X.1
  • 26
    • 84904776142 scopus 로고
    • Analysis and optimization of Rosenblatt-Parzen classifier with the aid of asymptotic expansions
    • KHARIN, YU. S. (1983). Analysis and optimization of Rosenblatt-Parzen classifier with the aid of asymptotic expansions. Automat. Remote Control 44 72-80.
    • (1983) Automat. Remote Control , vol.44 , pp. 72-80
    • Kharin, Yu.S.1
  • 28
    • 1542573450 scopus 로고    scopus 로고
    • Classification trees with unbiased multiway splits
    • KIM, H. and LOH, W.-Y. (2001). Classification trees with unbiased multiway splits. J. Amer. Statist. Assoc. 96 589-604.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 589-604
    • Kim, H.1    Loh, W.-Y.2
  • 29
    • 18444383813 scopus 로고
    • On exponential bounds on the Bayes risk of the nonparametric classification rules
    • (G. Roussas, ed.) Kluwer, Dordrecht
    • KRZYŻAK, A. (1991). On exponential bounds on the Bayes risk of the nonparametric classification rules. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.) 347-360. Kluwer, Dordrecht.
    • (1991) Nonparametric Functional Estimation and Related Topics , pp. 347-360
    • Krzyzak, A.1
  • 31
    • 0034910171 scopus 로고    scopus 로고
    • Nonparametric classification on two univariate distributions
    • LIN, C.-T. (2001). Nonparametric classification on two univariate distributions. Comm. Statist. Theory Methods 30 319-330.
    • (2001) Comm. Statist. Theory Methods , vol.30 , pp. 319-330
    • Lin, C.-T.1
  • 32
    • 0030490122 scopus 로고    scopus 로고
    • Consistency of data-driven histogram methods for density estimation and classification
    • LUGOSI, G. and NOBEL, A. (1996). Consistency of data-driven histogram methods for density estimation and classification. Ann. Statist. 24 687-706.
    • (1996) Ann. Statist. , vol.24 , pp. 687-706
    • Lugosi, G.1    Nobel, A.2
  • 33
    • 0028386458 scopus 로고
    • On the posterior-probability estimate of the error rate of nonparametric classification rules
    • LUGOSI, G. and PAWLAK, M. (1994). On the posterior-probability estimate of the error rate of nonparametric classification rules. IEEE Trans. Inform. Theory 40 475-481.
    • (1994) IEEE Trans. Inform. Theory , vol.40 , pp. 475-481
    • Lugosi, G.1    Pawlak, M.2
  • 34
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • MAMMEN, E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis. Ann. Statist. 27 1808-1829.
    • (1999) Ann. Statist. , vol.27 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 35
    • 0009289545 scopus 로고
    • Optimal rates on convergence to Bayes risk in nonparametric discrimination
    • MARRON, J. S. (1983). Optimal rates on convergence to Bayes risk in nonparametric discrimination. Ann. Statist. 11 1142-1155.
    • (1983) Ann. Statist. , vol.11 , pp. 1142-1155
    • Marron, J.S.1
  • 36
    • 38249006431 scopus 로고
    • Local data-driven bandwidth choice for density estimation
    • MIELNICZUK, J., SARDA, P. and VIEU, P. (1989). Local data-driven bandwidth choice for density estimation. J. Statist. Plann. Inference 23 53-69.
    • (1989) J. Statist. Plann. Inference , vol.23 , pp. 53-69
    • Mielniczuk, J.1    Sarda, P.2    Vieu, P.3
  • 37
    • 0027597058 scopus 로고
    • Kernel classification rules from missing data
    • PAWLAK, M. (1993). Kernel classification rules from missing data. IEEE Trans. Inform. Theory 39 979-988.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 979-988
    • Pawlak, M.1
  • 38
    • 0028429828 scopus 로고
    • On the finite sample performance of the nearest neighbor classifier
    • PSALTIS, D., SNAPP, R. R. and VENKATESH, S. S. (1994). On the finite sample performance of the nearest neighbor classifier. IEEE Trans. Inform. Theory 40 820-837.
    • (1994) IEEE Trans. Inform. Theory , vol.40 , pp. 820-837
    • Psaltis, D.1    Snapp, R.R.2    Venkatesh, S.S.3
  • 39
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686.
    • (1998) Ann. Statist. , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 40
    • 0042727437 scopus 로고    scopus 로고
    • Ideal bootstrap estimation of expected prediction error for k-nearest neighbor classifiers: Applications for classification and error assessment
    • STEELE, B. M. and PATTERSON, D. A. (2000). Ideal bootstrap estimation of expected prediction error for k-nearest neighbor classifiers: Applications for classification and error assessment. Statist. Comput. 10 349-355.
    • (2000) Statist. Comput. , vol.10 , pp. 349-355
    • Steele, B.M.1    Patterson, D.A.2
  • 41
    • 0004561183 scopus 로고
    • Univariate two-population distribution-free discrimination
    • STOLLER, D. S. (1954). Univariate two-population distribution-free discrimination. J. Amer. Statist. Assoc. 49 770-777.
    • (1954) J. Amer. Statist. Assoc. , vol.49 , pp. 770-777
    • Stoller, D.S.1
  • 42
    • 0001048793 scopus 로고
    • An asymptotically optimal window selection rule for kernel density estimates
    • STONE, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12 1285-1297.
    • (1984) Ann. Statist. , vol.12 , pp. 1285-1297
    • Stone, C.J.1
  • 43
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification. I. Rates of convergence
    • YANG, Y. H. (1999a). Minimax nonparametric classification. I. Rates of convergence. IEEE Trans. Inform. Theory 45 2271-2284.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 2271-2284
    • Yang, Y.H.1
  • 44
    • 0033356514 scopus 로고    scopus 로고
    • Minimax nonparametric classification. II. Model selection for adaptation
    • YANG, Y. H. (1999b). Minimax nonparametric classification. II. Model selection for adaptation. IEEE Trans. Inform. Theory 45 2285-2292.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 2285-2292
    • Yang, Y.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.