-
1
-
-
0024342246
-
A hyperpolarization-activated inward current in heart interneurons of the medicinal leech
-
Angstadt J.D., Calabrese R.L., A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. J. Neurosci. 9:1989;2846-2857.
-
(1989)
J. Neurosci.
, vol.9
, pp. 2846-2857
-
-
Angstadt, J.D.1
Calabrese, R.L.2
-
2
-
-
0033366338
-
Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABA-A receptor potentials
-
Bazhenov M., Timofeev I., Steriade M., Sejnowski J., Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABA-A receptor potentials. Nature Neurosci. 2:1999;168-174.
-
(1999)
Nature Neurosci.
, vol.2
, pp. 168-174
-
-
Bazhenov, M.1
Timofeev, I.2
Steriade, M.3
Sejnowski, J.4
-
3
-
-
0346053690
-
Almost-synchronous solutions for mutually coupled excitatory neurons
-
Bose A., Kopell N., Terman D., Almost-synchronous solutions for mutually coupled excitatory neurons. Physica D. 140:2000;69-94.
-
(2000)
Physica D
, vol.140
, pp. 69-94
-
-
Bose, A.1
Kopell, N.2
Terman, D.3
-
4
-
-
0000997882
-
The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations
-
Deng B., The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal. 22:1991;1631-1650.
-
(1991)
SIAM J. Math. Anal.
, vol.22
, pp. 1631-1650
-
-
Deng, B.1
-
5
-
-
0029785642
-
Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices
-
Destexhe A., Bal T., McCormick D.A., Sejnowski T.J., Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophys. 76:1996;2049-2070.
-
(1996)
J. Neurophys.
, vol.76
, pp. 2049-2070
-
-
Destexhe, A.1
Bal, T.2
McCormick, D.A.3
Sejnowski, T.J.4
-
6
-
-
0000132086
-
Large stable pulse solutions in reaction-diffusion equations
-
Doelman A., Gardner R., Kaper T., Large stable pulse solutions in reaction-diffusion equations. Ind. Univ. Math. J. 50(1):2001;443-507.
-
(2001)
Ind. Univ. Math. J.
, vol.50
, Issue.1
, pp. 443-507
-
-
Doelman, A.1
Gardner, R.2
Kaper, T.3
-
7
-
-
0001838331
-
Geometric singular perturbation theory beyond normal hyperbolicity
-
F. Dumortier, R. Roussarie, Geometric singular perturbation theory beyond normal hyperbolicity, in: Multiple Time-scale Dynamical Systems, IMA Volumes in Mathematics and its Applications, vol. 122, 2001, pp. 29-63.
-
(2001)
Multiple Time-scale Dynamical Systems, IMA Volumes in Mathematics and Its Applications
, vol.122
, pp. 29-63
-
-
Dumortier, F.1
Roussarie, R.2
-
8
-
-
0001356311
-
Persistence and smoothness of invariant manifolds for flows
-
Fenichel N., Persistence and smoothness of invariant manifolds for flows. Ind. Univ. Math. J. 21:1971;193-226.
-
(1971)
Ind. Univ. Math. J.
, vol.21
, pp. 193-226
-
-
Fenichel, N.1
-
9
-
-
34250627892
-
Geometric singular perturbation theory
-
Fenichel N., Geometric singular perturbation theory. J. Diff. Equ. 31:1979;53-98.
-
(1979)
J. Diff. Equ.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
10
-
-
0033539518
-
Continuous and lurching traveling pulses in neuronal networks with spatially-decaying connectivity and delay
-
Golomb D., Ermentrout B., Continuous and lurching traveling pulses in neuronal networks with spatially-decaying connectivity and delay. Proc. Natl. Acad. Sci. U.S.A. 96:1999;13480-13485.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 13480-13485
-
-
Golomb, D.1
Ermentrout, B.2
-
11
-
-
0029976329
-
Propagation of spindle waves in a thalamic slice model
-
Golomb D., Wang X.-J., Rinzel J., Propagation of spindle waves in a thalamic slice model. J. Neurophysiol. 75:1996;750-769.
-
(1996)
J. Neurophysiol.
, vol.75
, pp. 750-769
-
-
Golomb, D.1
Wang, X.-J.2
Rinzel, J.3
-
13
-
-
0002316532
-
Geometric singular perturbation theory
-
Dynamical Systems
-
C.K.R.T. Jones, Geometric singular perturbation theory, in: Dynamical Systems, Springer Lecture Notes in Mathematics, vol. 1609, 1995, pp. 44-120.
-
(1995)
Springer Lecture Notes in Mathematics
, vol.1609
, pp. 44-120
-
-
Jones, C.K.R.T.1
-
14
-
-
0000263519
-
Construction of the FitzHugh-Nagumo pulse using differential forms
-
H. Swinney, G. Aris, D.G. Aronson (Eds.), Springer, New York
-
C.K.R.T. Jones, N. Kopell, R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, in: H. Swinney, G. Aris, D.G. Aronson (Eds.), IMA Volumes in Mathematics and its Applications, vol. 37, Springer, New York, 1991.
-
(1991)
IMA Volumes in Mathematics and Its Applications
, vol.37
-
-
Jones, C.K.R.T.1
Kopell, N.2
Langer, R.3
-
15
-
-
0029076314
-
Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro
-
Kim U., Bal T., McCormick D.A., Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J. Neurophysiol. 74:1995;1301-1323.
-
(1995)
J. Neurophysiol.
, vol.74
, pp. 1301-1323
-
-
Kim, U.1
Bal, T.2
McCormick, D.A.3
-
16
-
-
0030637321
-
Fast and slow waves in the FitzHugh-Nagumo equation
-
Krupa M., Sandstede B., Szmolyan P., Fast and slow waves in the FitzHugh-Nagumo equation. J. Diff. Equ. 133:1997;49-97.
-
(1997)
J. Diff. Equ.
, vol.133
, pp. 49-97
-
-
Krupa, M.1
Sandstede, B.2
Szmolyan, P.3
-
17
-
-
0036052772
-
Extending geometric singular perturbation theory to non-hyperbolic points-fold and canard points in two dimensions
-
Krupa M., Szmolyan P., Extending geometric singular perturbation theory to non-hyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2):2001;286-314.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, Issue.2
, pp. 286-314
-
-
Krupa, M.1
Szmolyan, P.2
-
19
-
-
0025670137
-
Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurone
-
McCormick D.A., Pape H.C., Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurone. J. Physiol. 431:1990;291-318.
-
(1990)
J. Physiol.
, vol.431
, pp. 291-318
-
-
McCormick, D.A.1
Pape, H.C.2
-
20
-
-
0029871264
-
Queer current and pacemaker: The hyperpolarization-activated cation current in neurons
-
Pape H.C., Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Ann. Rev. Physiol. 58:1996;299-327.
-
(1996)
Ann. Rev. Physiol.
, vol.58
, pp. 299-327
-
-
Pape, H.C.1
-
21
-
-
0036226617
-
Spatially structured activity in synaptically coupled neuronal networks. I. Traveling fronts and pulses
-
Pinto D.J., Ermentrout G.B., Spatially structured activity in synaptically coupled neuronal networks. I. Traveling fronts and pulses. SIAM J. Appl. Math. 62(1):2001;206-225.
-
(2001)
SIAM J. Appl. Math.
, vol.62
, Issue.1
, pp. 206-225
-
-
Pinto, D.J.1
Ermentrout, G.B.2
-
22
-
-
0032570706
-
Propagating activity patterns in large-scale inhibitory neuronal networks
-
Rinzel J., Terman D., Wang X.-J., Ermentrout B., Propagating activity patterns in large-scale inhibitory neuronal networks. Science. 279:1998;1351-1355.
-
(1998)
Science
, vol.279
, pp. 1351-1355
-
-
Rinzel, J.1
Terman, D.2
Wang, X.-J.3
Ermentrout, B.4
-
23
-
-
0034150797
-
Geometric analysis of population rhythms in synaptically coupled neuronal networks
-
Rubin J.E., Terman D., Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural Comput. 12(3):2000;597-645.
-
(2000)
Neural Comput.
, vol.12
, Issue.3
, pp. 597-645
-
-
Rubin, J.E.1
Terman, D.2
-
24
-
-
67649321652
-
Geometric singular perturbation analysis of neuronal dynamics
-
B. Fiedler, G. Iooss, N. Kopell (Eds.), Elsevier, Amsterdam
-
J. Rubin, D. Terman, Geometric singular perturbation analysis of neuronal dynamics, in: B. Fiedler, G. Iooss, N. Kopell (Eds.), Handbook of Dynamical Systems, vol. 3: Toward Applications, Elsevier, Amsterdam, 2002.
-
(2002)
Handbook of Dynamical Systems, Vol. 3: Toward Applications
, vol.3
-
-
Rubin, J.1
Terman, D.2
-
25
-
-
0028457504
-
Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks
-
Skinner F.K., Kopell N., Marder E., Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J. Comput. Neurosci. 1:1994;69-87.
-
(1994)
J. Comput. Neurosci.
, vol.1
, pp. 69-87
-
-
Skinner, F.K.1
Kopell, N.2
Marder, E.3
-
27
-
-
0031794887
-
Long-range connections synchronize rather than spread intrathalamic oscillations: Computational modeling and in vitro electrophysiology
-
V. Sohal, J. Huguenard, Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology, J. Neurophysiol. 80 (1998) 1736-1751.
-
(1998)
J. Neurophysiol.
, vol.80
, pp. 1736-1751
-
-
Sohal, V.1
Huguenard, J.2
-
28
-
-
0035178331
-
Propagating activity patterns in thalamic neuronal networks
-
Terman D.H., Ermentrout G.B., Yew A.C., Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math. 61:2001;1578-1604.
-
(2001)
SIAM J. Appl. Math.
, vol.61
, pp. 1578-1604
-
-
Terman, D.H.1
Ermentrout, G.B.2
Yew, A.C.3
-
29
-
-
0000821114
-
Dynamics of two mutually coupled inhibitory neurons
-
Terman D., Kopell N., Bose A., Dynamics of two mutually coupled inhibitory neurons. Physica D. 117:1998;241-275.
-
(1998)
Physica D
, vol.117
, pp. 241-275
-
-
Terman, D.1
Kopell, N.2
Bose, A.3
-
30
-
-
0003082358
-
Alternating and synchronous rhythms in reciprocally inhibitory model neurons
-
Wang X.-J., Rinzel J., Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4:1992;84-97.
-
(1992)
Neural Comput.
, vol.4
, pp. 84-97
-
-
Wang, X.-J.1
Rinzel, J.2
|