메뉴 건너뛰기




Volumn 42, Issue 3-4, 2004, Pages 467-478

Rapid online adaptation using speaker space model evolution

Author keywords

Latent variable model; Online adaptation; Prior evolution; Quasi Bayes estimate; Rapid speaker adaptation; Speaker space model

Indexed keywords

DATA REDUCTION; DATABASE SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; PRINCIPAL COMPONENT ANALYSIS;

EID: 1842580255     PISSN: 01676393     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.specom.2004.01.002     Document Type: Article
Times cited : (2)

References (28)
  • 1
    • 0034842307 scopus 로고    scopus 로고
    • Anisotropic MAP defined by eigenvoice for large vocabulary speech recognition
    • Salt Lake City, USA
    • Botterweck, H., 2001. Anisotropic MAP defined by eigenvoice for large vocabulary speech recognition. In: Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., Salt Lake City, USA.
    • (2001) Proc. IEEE Internat. Conf. Acoust. Speech Signal Process.
    • Botterweck, H.1
  • 2
    • 0034848874 scopus 로고    scopus 로고
    • Eigenspace-based maximum a posteriori linear regression for rapid speaker adaptation
    • Salt Lake City, USA
    • Chen, K.-T., Wang, H.-M., 2001. Eigenspace-based maximum a posteriori linear regression for rapid speaker adaptation. In: Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., Salt Lake City, USA.
    • (2001) Proc. IEEE Internat. Conf. Acoust. Speech Signal Process.
    • Chen, K.-T.1    Wang, H.-M.2
  • 3
  • 4
    • 0001365754 scopus 로고    scopus 로고
    • On-line hierarchical transformation of hidden Markov models for speech recognition
    • Chien J.-T. On-line hierarchical transformation of hidden Markov models for speech recognition. IEEE Trans. Speech Audio Process. 7:1999;656-667.
    • (1999) IEEE Trans. Speech Audio Process. , vol.7 , pp. 656-667
    • Chien, J.-T.1
  • 5
    • 0036649879 scopus 로고    scopus 로고
    • Quasi-Bayes linear regression for sequential learning of hidden Markov models
    • Chien J.-T. Quasi-Bayes linear regression for sequential learning of hidden Markov models. IEEE Trans. Speech Audio Process. 10(July):2002;268-278.
    • (2002) IEEE Trans. Speech Audio Process. , vol.10 , Issue.JULY , pp. 268-278
    • Chien, J.-T.1
  • 6
    • 84874875877 scopus 로고    scopus 로고
    • Maximum a posteriori linear regression with elliptically symmetric matrix priors
    • Chou, W., 1999. Maximum a posteriori linear regression with elliptically symmetric matrix priors. In: Proc. Euro. Conf. Speech Comm. Technol., pp. 1-4.
    • (1999) Proc. Euro. Conf. Speech Comm. Technol. , pp. 1-4
    • Chou, W.1
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. 39:1977;1-38.
    • (1977) J. Roy. Statist. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0034227757 scopus 로고    scopus 로고
    • Cluster adaptive training of hidden Markov models
    • Gales M.J.F. Cluster adaptive training of hidden Markov models. IEEE Trans. Speech Audio Process. 8(4):2000;417-428.
    • (2000) IEEE Trans. Speech Audio Process. , vol.8 , Issue.4 , pp. 417-428
    • Gales, M.J.F.1
  • 9
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
    • Gauvain J.L., Lee C.-H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Trans. Speech Audio Process. 2:1994;291-298.
    • (1994) IEEE Trans. Speech Audio Process. , vol.2 , pp. 291-298
    • Gauvain, J.L.1    Lee, C.-H.2
  • 10
    • 0031103160 scopus 로고    scopus 로고
    • On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate
    • Huo Q., Lee C.-H. On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate. IEEE Trans. Speech Audio Process. 5:1997;161-172.
    • (1997) IEEE Trans. Speech Audio Process. , vol.5 , pp. 161-172
    • Huo, Q.1    Lee, C.-H.2
  • 11
    • 0032122203 scopus 로고    scopus 로고
    • On-line adaptive learning of the correlated continuous density hidden Markov models for speech recognition
    • Huo Q., Lee C.-H. On-line adaptive learning of the correlated continuous density hidden Markov models for speech recognition. IEEE Trans. Speech Audio Process. 6:1998;386-397.
    • (1998) IEEE Trans. Speech Audio Process. , vol.6 , pp. 386-397
    • Huo, Q.1    Lee, C.-H.2
  • 12
    • 0035341099 scopus 로고    scopus 로고
    • Online adaptive learning of continuous-density hidden Markov models based on multiple-stream prior evolution and posterior pooling
    • Huo Q., Ma B. Online adaptive learning of continuous-density hidden Markov models based on multiple-stream prior evolution and posterior pooling. IEEE Trans. Speech Audio Process. 9:2001;388-398.
    • (2001) IEEE Trans. Speech Audio Process. , vol.9 , pp. 388-398
    • Huo, Q.1    Ma, B.2
  • 14
    • 85009106031 scopus 로고    scopus 로고
    • Bayesian speaker adaptation based on probabilistic principal component analysis
    • Kim, D.K., Kim, N.S., 2000. Bayesian speaker adaptation based on probabilistic principal component analysis. In: Proc. Internat. Conf. Spoken Language Process., pp. 734-737.
    • (2000) Proc. Internat. Conf. Spoken Language Process. , pp. 734-737
    • Kim, D.K.1    Kim, N.S.2
  • 15
    • 0347789326 scopus 로고    scopus 로고
    • Maximum a posteriori adaptation of HMM parameters based on probabilistic principal component analysis
    • Sophia-Antipolis, France
    • Kim, D.K., Kim, N.S., 2001. Maximum a posteriori adaptation of HMM parameters based on probabilistic principal component analysis. In: Adaptation Methods for Speech Recognition, ISCA ITR-Workshop, Sophia-Antipolis, France, pp. 25-28.
    • (2001) Adaptation Methods for Speech Recognition, ISCA ITR-workshop , pp. 25-28
    • Kim, D.K.1    Kim, N.S.2
  • 16
    • 85009291182 scopus 로고    scopus 로고
    • Online adaptation of continuous density hidden Markov models based on speaker space model evolution
    • Denver, USA
    • Kim, D.K., Kim, N.S., 2002. Online adaptation of continuous density hidden Markov models based on speaker space model evolution. In: Proc. Internat. Conf. Spoken Language Process., Denver, USA, pp. 1393-1396.
    • (2002) Proc. Internat. Conf. Spoken Language Process. , pp. 1393-1396
    • Kim, D.K.1    Kim, N.S.2
  • 17
    • 0346460276 scopus 로고    scopus 로고
    • Maximum a posteriori adaptation of HMM parameters based on speaker space projection
    • Kim D.K., Kim N.S. Maximum a posteriori adaptation of HMM parameters based on speaker space projection. Speech Commun. 42:2004;59-73.
    • (2004) Speech Commun. , vol.42 , pp. 59-73
    • Kim, D.K.1    Kim, N.S.2
  • 20
    • 0345898157 scopus 로고    scopus 로고
    • Time is money: Why very rapid adaptation matters. In: Adaptation Methods for Speech Recognition
    • Sophia-Antipolis, France
    • Kuhn, R., Perronnin, F., Junqua, J.-C., 2001. Time is money: why very rapid adaptation matters. In: Adaptation Methods for Speech Recognition. ISCA ITR-Workshop, Sophia-Antipolis, France, pp. 33-36.
    • (2001) ISCA ITR-workshop , pp. 33-36
    • Kuhn, R.1    Perronnin, F.2    Junqua, J.-C.3
  • 21
    • 0032140546 scopus 로고    scopus 로고
    • On stochastic feature and model compensation approaches to robust speech recognition
    • Lee C.-H. On stochastic feature and model compensation approaches to robust speech recognition. Speech Comm. 25:1997;29-47.
    • (1997) Speech Comm. , vol.25 , pp. 29-47
    • Lee, C.-H.1
  • 22
    • 0000159105 scopus 로고    scopus 로고
    • On adaptive decision rules and decision parameter adaptation for automatic speech recognition
    • Lee C.-H., Huo Q. On adaptive decision rules and decision parameter adaptation for automatic speech recognition. Proc. IEEE. 88(8):2000;1241-1269.
    • (2000) Proc. IEEE , vol.88 , Issue.8 , pp. 1241-1269
    • Lee, C.-H.1    Huo, Q.2
  • 23
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • Leggetter C.J., Woodland P.C. Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comput. Speech Lang. 9:1995;171-185.
    • (1995) Comput. Speech Lang. , vol.9 , pp. 171-185
    • Leggetter, C.J.1    Woodland, P.C.2
  • 24
    • 34250232348 scopus 로고
    • EM algorithms for factor analysis
    • Rubin D., Thayer D. EM algorithms for factor analysis. Psychometrika. 47:1982;69-76.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 25
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping M., Bishop C. Mixtures of probabilistic principal component analysers. Neural Comput. 11(2):1999;443-482.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.