-
2
-
-
84913150907
-
-
(b) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur, and Silicon 1991, 63, 193.
-
(1991)
Phosphorus, Sulfur, and Silicon
, vol.63
, pp. 193
-
-
Kafarski, P.1
Lejczak, B.2
-
4
-
-
0017853042
-
-
(a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature 1978, 272, 56.
-
(1978)
Nature
, vol.272
, pp. 56
-
-
Allen, J.G.1
Atherton, F.R.2
Hall, M.J.3
Hassall, C.H.4
Holmes, S.W.5
Lambert, R.W.6
Nisbet, L.J.7
Ringrose, P.S.8
-
5
-
-
0024370749
-
-
(b) Pratt, R. F. Science 1989, 246. 917.
-
(1989)
Science
, vol.246
, pp. 917
-
-
Pratt, R.F.1
-
6
-
-
82855179830
-
-
Maier, L.; Diel, P. J. Phosphorus, Sulfur, and Silicon 1991, 57, 57.
-
(1991)
Phosphorus, Sulfur, and Silicon
, vol.57
, pp. 57
-
-
Maier, L.1
Diel, P.J.2
-
7
-
-
0030272641
-
-
Beers, S. A.; Schwender, C. F.; Loughney, D. A.; Malloy, E.; Demarest, K.; Jordan, J. Bioorg. Med. Chem. 1996, 4, 1693.
-
(1996)
Bioorg. Med. Chem.
, vol.4
, pp. 1693
-
-
Beers, S.A.1
Schwender, C.F.2
Loughney, D.A.3
Malloy, E.4
Demarest, K.5
Jordan, J.6
-
9
-
-
84953500772
-
-
(b) Kukhar, V. P.; Soloshonok, V. A.; Solodenko, V. A. Phosphorus, Sulfur, and Silicon 1994, 92, 239.
-
(1994)
Phosphorus, Sulfur, and Silicon
, vol.92
, pp. 239
-
-
Kukhar, V.P.1
Soloshonok, V.A.2
Solodenko, V.A.3
-
12
-
-
0000634228
-
-
(a) Burk, M. J.; Stammers, T. A.; Straub, J. A. Org. Lett. 1999, 1, 387.
-
(1999)
Org. Lett.
, vol.1
, pp. 387
-
-
Burk, M.J.1
Stammers, T.A.2
Straub, J.A.3
-
13
-
-
0031683162
-
-
(b) Schmidt, U.; Krause, H. W.; Oehme, G.; Michalik, M.; Fischer, C. Chirality 1998, 10, 564.
-
(1998)
Chirality
, vol.10
, pp. 564
-
-
Schmidt, U.1
Krause, H.W.2
Oehme, G.3
Michalik, M.4
Fischer, C.5
-
14
-
-
0030062627
-
-
(c) Schmidt, U.; Oehme, G.; Krause, H. Synth. Commun. 1996, 26, 777.
-
(1996)
Synth. Commun.
, vol.26
, pp. 777
-
-
Schmidt, U.1
Oehme, G.2
Krause, H.3
-
16
-
-
85047671655
-
-
(e) Kitamura, M.; Tokunaga, M.; Pham, T.; Lubell, W. D.; Noyori, R. Tetrahedron Lett. 1995, 36, 5769.
-
(1995)
Tetrahedron Lett.
, vol.36
, pp. 5769
-
-
Kitamura, M.1
Tokunaga, M.2
Pham, T.3
Lubell, W.D.4
Noyori, R.5
-
17
-
-
0024544078
-
-
(f) Sawamura, M.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, 30, 2247.
-
(1989)
Tetrahedron Lett.
, vol.30
, pp. 2247
-
-
Sawamura, M.1
Ito, Y.2
Hayashi, T.3
-
18
-
-
0034637614
-
-
(a) Schlemminger, I.; Saida, Y.; Gröger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.; Martens, J. J. Org. Chem. 2000, 65, 4818.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 4818
-
-
Schlemminger, I.1
Saida, Y.2
Gröger, H.3
Maison, W.4
Durot, N.5
Sasai, H.6
Shibasaki, M.7
Martens, J.8
-
19
-
-
0032495793
-
-
(b) Gröger, H.; Saida, Y.; Sasai, H.; Yamaguchi, K.; Martens, J.; Shibasaki, M. J. Am. Chem Soc. 1998, 120, 3089.
-
(1998)
J. Am. Chem Soc.
, vol.120
, pp. 3089
-
-
Gröger, H.1
Saida, Y.2
Sasai, H.3
Yamaguchi, K.4
Martens, J.5
Shibasaki, M.6
-
20
-
-
0039150859
-
-
(c) Gröger, H.; Saida, Y.; Arai, S.; Martens, J.; Sasai, H.; Shibasaki, M. Tetrahedron Lett. 1996, 37, 9291.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 9291
-
-
Gröger, H.1
Saida, Y.2
Arai, S.3
Martens, J.4
Sasai, H.5
Shibasaki, M.6
-
21
-
-
33751154738
-
-
(d) Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. J. Org. Chem. 1995, 60, 6656.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 6656
-
-
Sasai, H.1
Arai, S.2
Tahara, Y.3
Shibasaki, M.4
-
23
-
-
0034599654
-
-
(b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279.
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 1279
-
-
Sigman, M.S.1
Vachal, P.2
Jacobsen, E.N.3
-
28
-
-
0142072631
-
-
(g) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 12672
-
-
Okino, T.1
Hoashi, Y.2
Takemoto, Y.3
-
29
-
-
1842513956
-
-
note
-
Other nucleophilic phosphorus reagents examined included diethyl phosphite (6% conversion, 22 h), trimethyl phosphite (0% ee), and dimethyl tert-butyldimethylsilyl phosphite (no reaction, 16 h). The poor reactivity of dimethyl tert-butyldimethylsilyl phosphite implies a critical role for the proton of the dialkyl phosphites. This is further supported by the somewhat counterintuitive increase in reaction rate with less electron-rich dialkyl phosphite nucleophiles. A correlation between reactivity and the acidity of the phosphite proton is suggested.
-
-
-
-
30
-
-
1842618492
-
-
note
-
For example, la catalyzes the addition of diphenyl phosphite 3b to imine 2a in 59% ee under the same conditions employed using 1b to provide product in 77% ee (Table 1). Also, catalyst 1a affords 4c in 85% ee as compared to 90% ee using catalyst 1b under the conditions described in Table 2. Additional urea and thiourea catalysts were examined. See the Supporting Information.
-
-
-
-
31
-
-
1842513951
-
-
note
-
These studies were guided by the hypothesis that catalysts 1 activate imines to nucleophilic addition via hydrogen bonding to the thiourea protons. See ref 9d.
-
-
-
-
32
-
-
1842566349
-
-
note
-
A crossover experiment revealed that racemization occurred via a retroaddition pathway.
-
-
-
-
33
-
-
1842461770
-
-
note
-
For the preparation of 3h, see the Supporting Information.
-
-
-
-
34
-
-
1842513953
-
-
note
-
Optimization revealed very little solvent dependence; nonpolar ethereal solvents give the highest enantioselectivities, with diethyl ether providing optimal results. The reaction also displays a minimal dependence upon concentration, but best results are achieved at 0.4 M. When possible, lowering the temperature to 4 °C has a beneficial effect upon enantioselectivity.
-
-
-
-
35
-
-
1842513952
-
-
note
-
Unbranched aliphatic imines are not useful substrates due to their rapid decomposition under the reaction conditions.
-
-
-
|