메뉴 건너뛰기




Volumn 26, Issue 4, 2004, Pages 466-478

Motion estimation using statistical learning theory

Author keywords

Aperture problem; Complexity control; Condition number; Image flow; Model selection; Motion estimation; Robust learning; Statistical learning theory; Tracking; Visual motion

Indexed keywords

EXTRAPOLATION; INTERPOLATION; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION; STATISTICAL METHODS;

EID: 1842530929     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2004.1265862     Document Type: Article
Times cited : (30)

References (30)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor information
    • H. Akaike, "Statistical Predictor Information," Ann. Inst. of Statistical Math., vol. 22, pp. 203-217, 1970.
    • (1970) Ann. Inst. of Statistical Math. , vol.22 , pp. 203-217
    • Akaike, H.1
  • 2
    • 0028496834 scopus 로고
    • Estimating heading direction using normal flow
    • Y. Aloimonos and Z. Duric, "Estimating Heading Direction Using Normal Flow," Int'l J. Computer Vision, vol. 13, pp. 33-56, 1994.
    • (1994) Int'l J. Computer Vision , vol.13 , pp. 33-56
    • Aloimonos, Y.1    Duric, Z.2
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoid function
    • A. Barron, "Universal Approximation Bounds for Superposition of a Sigmoid Function," IEEE Trans. Information Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Information Theory , vol.39 , pp. 930-945
    • Barron, A.1
  • 4
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation of multiple motions: Parametric and piecewise-flow fields
    • M.J. Black and P. Anandan, "The Robust Estimation of Multiple Motions: Parametric and Piecewise-Flow Fields," Computer Vision and Image Understanding, vol. 63, pp. 75-104, 1996.
    • (1996) Computer Vision and Image Understanding , vol.63 , pp. 75-104
    • Black, M.J.1    Anandan, P.2
  • 5
    • 0000740924 scopus 로고    scopus 로고
    • Recognizing human motion using parametrized models of optical flow
    • S. Mubarak and R. Jain, eds.; Kluwer
    • M.J. Black, Y. Yacoob, and S.X. Ju, "Recognizing Human Motion Using Parametrized Models of Optical Flow," Motion-Based Recognition, S. Mubarak and R. Jain, eds., pp. 245-269, Kluwer, 1997.
    • (1997) Motion-Based Recognition , pp. 245-269
    • Black, M.J.1    Yacoob, Y.2    Ju, S.X.3
  • 8
    • 0034321732 scopus 로고    scopus 로고
    • Model selection techniques and merging rules for range data segmentation algorithms
    • K. Bubna and C.V. Stewart, "Model Selection Techniques and Merging Rules for Range Data Segmentation Algorithms," Computer Vision and Image Understanding, vol. 80, pp. 215-245, 2000.
    • (2000) Computer Vision and Image Understanding , vol.80 , pp. 215-245
    • Bubna, K.1    Stewart, C.V.2
  • 10
    • 0032595046 scopus 로고    scopus 로고
    • Model selection for regression using VC-generalization bounds
    • V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik, "Model Selection for Regression Using VC-Generalization Bounds," IEEE Trans. Neural Networks, vol. 10, pp. 1075-1089, 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1075-1089
    • Cherkassky, V.1    Shao, X.2    Mulier, F.3    Vapnik, V.4
  • 11
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • P. Craven and G. Wahba, "Smoothing Noisy Data with Spline Functions," Numerische Math., vol. 31, pp. 377-403, 1979.
    • (1979) Numerische Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 13
    • 0002109783 scopus 로고
    • An overview of predictive learning and function approximation
    • V. Cherkassky, J.H. Friedman, and H. Wechsler, eds., NATO ASI Series F; Springer
    • J.H. Friedman, "An Overview of Predictive Learning and Function Approximation," From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J.H. Friedman, and H. Wechsler, eds., NATO ASI Series F, vol. 136, Springer, 1994.
    • (1994) From Statistics to Neural Networks: Theory and Pattern Recognition Applications , vol.136
    • Friedman, J.H.1
  • 14
    • 0000065292 scopus 로고
    • Regularization theory, radial basis functions and networks
    • V. Cherkassky, J.H. Friedman, and H. Wechsler, eds., NATO ASI Series F; Springer
    • F. Girosi, "Regularization Theory, Radial Basis Functions and Networks," From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J.H. Friedman, and H. Wechsler, eds., NATO ASI Series F, v. 136, Springer, 1994.
    • (1994) From Statistics to Neural Networks: Theory and Pattern Recognition Applications , vol.136
    • Girosi, F.1
  • 18
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning in neural networks with bounded fan-in
    • W. Lee, P. Bartlett, and R. Williamson, "Efficient Agnostic Learning in Neural Networks with Bounded Fan-In," IEEE Trans. Information Theory, vol. 42, pp. 2118-2132, 1996.
    • (1996) IEEE Trans. Information Theory , vol.42 , pp. 2118-2132
    • Lee, W.1    Bartlett, P.2    Williamson, R.3
  • 19
    • 0026135419 scopus 로고
    • Robust regression methods for computer vision: A review
    • P. Meer, D. Mintz, and A. Rosenfeld, "Robust Regression Methods for Computer Vision: A Review," Int'l J. Computer Vision, vol. 6, pp. 59-70, 1991.
    • (1991) Int'l J. Computer Vision , vol.6 , pp. 59-70
    • Meer, P.1    Mintz, D.2    Rosenfeld, A.3
  • 21
  • 22
    • 0004125659 scopus 로고    scopus 로고
    • S. Nayar and T. Poggio, eds., Oxford Univ. Press
    • S. Nayar and T. Poggio, Early Visual Learning, S. Nayar and T. Poggio, eds., Oxford Univ. Press, 1996.
    • (1996) Early Visual Learning
    • Nayar, S.1    Poggio, T.2
  • 23
    • 0032597672 scopus 로고    scopus 로고
    • Machine learning, machine vision, and the brain
    • T. Poggio and C.R. Shelton, "Machine Learning, Machine Vision, and the Brain," AI Magazine, vol. 20, no. 3, pp. 37-55, 1999.
    • (1999) AI Magazine , vol.20 , Issue.3 , pp. 37-55
    • Poggio, T.1    Shelton, C.R.2
  • 26
    • 77956887130 scopus 로고
    • An optimal selection of regression variables
    • R. Shibata, "An Optimal Selection of Regression Variables," Biometrika, vol. 68, pp. 45-54, 1981.
    • (1981) Biometrika , vol.68 , pp. 45-54
    • Shibata, R.1
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz, "Estimating the Dimension of a Model," Ann. Statistics, vol. 6, pp. 461-464, 1978.
    • (1978) Ann. Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.