-
1
-
-
0000481680
-
The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation
-
ABRY, P. AND SELLAN, F. (1996). The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation. Appl. Comput. Harmon. Anal. 3, 377-383.
-
(1996)
Appl. Comput. Harmon. Anal.
, vol.3
, pp. 377-383
-
-
Abry, P.1
Sellan, F.2
-
2
-
-
0035637532
-
Approximations of small jumps of Lévy processes with a view towards simulation
-
ASMUSSEN, S. AND ROSIŃSKI, J. (2001). Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Prob. 38, 482-493.
-
(2001)
J. Appl. Prob.
, vol.38
, pp. 482-493
-
-
Asmussen, S.1
Rosiński, J.2
-
3
-
-
0037874979
-
Identification and properties of real harmonizable fractional Lévy motions
-
BENASSI, A., COHEN, S. AND ISTAS, J. (2002). Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8, 97-115.
-
(2002)
Bernoulli
, vol.8
, pp. 97-115
-
-
Benassi, A.1
Cohen, S.2
Istas, J.3
-
4
-
-
0031496443
-
Gaussian processes and pseudodifferential elliptic operators
-
BENASSI, A., JAFFARD, S. AND ROUX, D. (1997). Gaussian processes and pseudodifferential elliptic operators. Revista Math. Iberoamer. 13, 19-89.
-
(1997)
Revista Math. Iberoamer.
, vol.13
, pp. 19-89
-
-
Benassi, A.1
Jaffard, S.2
Roux, D.3
-
6
-
-
0001663228
-
On simulation from infinitely divisible distributions
-
BONDESSON, L. (1982). On simulation from infinitely divisible distributions. Adv. Appl. Prob. 14, 855-869.
-
(1982)
Adv. Appl. Prob.
, vol.14
, pp. 855-869
-
-
Bondesson, L.1
-
7
-
-
0042616622
-
Simulation of multifractional Brownian motion
-
CHAN, G. AND WOOD, A. (1998). Simulation of multifractional Brownian motion. Proc. Comput. Statist. 233-238.
-
(1998)
Proc. Comput. Statist.
, pp. 233-238
-
-
Chan, G.1
Wood, A.2
-
8
-
-
0012307377
-
Simulation and identification of the fractional Brownian motion: A bibliographical and comparative study
-
COEURJOLLY, J.-F. (2000). Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Statist. Software 5, No. 7. Available at http://www.jstatsoft.org/.
-
(2000)
J. Statist. Software
, vol.5
, Issue.7
-
-
Coeurjolly, J.-F.1
-
10
-
-
0001613468
-
The best constants in the Khintchine inequality
-
HAAGERUP, U. (1981). The best constants in the Khintchine inequality. Studio Math. 70, 231-283.
-
(1981)
Studio Math.
, vol.70
, pp. 231-283
-
-
Haagerup, U.1
-
11
-
-
2342547099
-
Real harmonizable multifractional Lévy motions
-
To appear
-
LACAUX, C. (2004). Real harmonizable multifractional Lévy motions. To appear in Ann. Inst. H. Poincaré Prob. Statist.
-
(2004)
Ann. Inst. H. Poincaré Prob. Statist.
-
-
Lacaux, C.1
-
13
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
MALLAT, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intellig. 11, 674-693.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intellig.
, vol.11
, pp. 674-693
-
-
Mallat, S.1
-
14
-
-
0000501589
-
Fractional Brownian motion, fractional noises and applications
-
MANDELBROT, B. AND NESS, J. V. (1968). Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422-437.
-
(1968)
SIAM Rev.
, vol.10
, pp. 422-437
-
-
Mandelbrot, B.1
Ness, J.V.2
-
15
-
-
0003879309
-
Multifractional Brownian motion: Definition and preliminary results
-
INRIA
-
PELTIER, R. AND LÉVY VÉHEL, J. (1996). Multifractional Brownian motion: definition and preliminary results. Tech. Rep. RR-2645, INRIA. Available at http://www-syntim.inria.fr/fractales/.
-
(1996)
Tech. Rep.
, vol.RR-2645
-
-
Peltier, R.1
Lévy Véhel, J.2
-
16
-
-
0002149362
-
Limit Theorems of Probability Theory
-
Oxford University Press
-
PETROV, V. V. (1995). Limit Theorems of Probability Theory (Oxford Studies Prob. 4). Oxford University Press.
-
(1995)
Oxford Studies Prob.
, vol.4
-
-
Petrov, V.V.1
-
17
-
-
0001767350
-
On series representations of infinitely divisible random vectors
-
ROSIŃSKI, J. (1990). On series representations of infinitely divisible random vectors. Ann. Prob. 18, 405-430.
-
(1990)
Ann. Prob.
, vol.18
, pp. 405-430
-
-
Rosiński, J.1
-
18
-
-
0037740752
-
Series representations of Lévy processes from the perspective of point processes
-
Birkhäuser, Boston, MA
-
ROSIŃSKI, J. (2001). Series representations of Lévy processes from the perspective of point processes. In Lévy Processes, Birkhäuser, Boston, MA, pp. 401-415.
-
(2001)
Lévy Processes
, pp. 401-415
-
-
Rosiński, J.1
-
19
-
-
0037290933
-
Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process
-
RUBENTHALER, S. (2003). Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process. Stoch. Process. Appl. 103, 311-349.
-
(2003)
Stoch. Process. Appl.
, vol.103
, pp. 311-349
-
-
Rubenthaler, S.1
-
22
-
-
1842536488
-
Simulation of stochastic integrals with respect to Lévy processes of type G
-
WIKTORSSON, M. (2002). Simulation of stochastic integrals with respect to Lévy processes of type G. Stoch. Process. Appl. 101, 113-125.
-
(2002)
Stoch. Process. Appl.
, vol.101
, pp. 113-125
-
-
Wiktorsson, M.1
|