-
1
-
-
0001159253
-
-
D. R. Nelson, Phys. Rev. B 18, 2318 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979); A. P. Young, ibid., p. 1855.
-
(1978)
Phys. Rev. B
, vol.18
, pp. 2318
-
-
Nelson, D.R.1
-
2
-
-
3843084641
-
-
D. R. Nelson, Phys. Rev. B 18, 2318 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979); A. P. Young, ibid., p. 1855.
-
(1978)
Phys. Rev. Lett.
, vol.41
, pp. 121
-
-
Halperin, B.I.1
Nelson, D.R.2
-
3
-
-
4243366131
-
-
D. R. Nelson, Phys. Rev. B 18, 2318 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979); A. P. Young, ibid., p. 1855.
-
(1979)
Phys. Rev. B
, vol.19
, pp. 2457
-
-
Nelson, D.R.1
Halperin, B.I.2
-
4
-
-
0001159253
-
-
D. R. Nelson, Phys. Rev. B 18, 2318 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979); A. P. Young, ibid., p. 1855.
-
Phys. Rev. B
, pp. 1855
-
-
Young, A.P.1
-
9
-
-
0022704471
-
-
S. Garoff, H. W. Deckman, J. H. Dunsmuir, M. S. Alvarez, J. Phys. (Paris) 47, 701 (1986); R. Viswanathan, L. L. Madsen, J. A. Zasadzinski, D. K. Schwartz, Science 269, 51 (1995).
-
(1986)
J. Phys. (Paris)
, vol.47
, pp. 701
-
-
Garoff, S.1
Deckman, H.W.2
Dunsmuir, J.H.3
Alvarez, M.S.4
-
10
-
-
0029638525
-
-
S. Garoff, H. W. Deckman, J. H. Dunsmuir, M. S. Alvarez, J. Phys. (Paris) 47, 701 (1986); R. Viswanathan, L. L. Madsen, J. A. Zasadzinski, D. K. Schwartz, Science 269, 51 (1995).
-
(1995)
Science
, vol.269
, pp. 51
-
-
Viswanathan, R.1
Madsen, L.L.2
Zasadzinski, J.A.3
Schwartz, D.K.4
-
12
-
-
36549097033
-
-
J. P. Rabe, J. D. Swalen, J. F. Rabolt, J. Chem. Phys. 86, 1601 (1987); L. Rothberg, G. S. Higashi, D. L. Allara, S. Garoff, Chem. Phys. Lett. 133, 67 (1987); T. Hasegawa, S. Takeda, A. Kawaguchi, J. Umemura, Langmuir 11, 1236 (1995).
-
(1987)
J. Chem. Phys.
, vol.86
, pp. 1601
-
-
Rabe, J.P.1
Swalen, J.D.2
Rabolt, J.F.3
-
13
-
-
0004999479
-
-
J. P. Rabe, J. D. Swalen, J. F. Rabolt, J. Chem. Phys. 86, 1601 (1987); L. Rothberg, G. S. Higashi, D. L. Allara, S. Garoff, Chem. Phys. Lett. 133, 67 (1987); T. Hasegawa, S. Takeda, A. Kawaguchi, J. Umemura, Langmuir 11, 1236 (1995).
-
(1987)
Chem. Phys. Lett.
, vol.133
, pp. 67
-
-
Rothberg, L.1
Higashi, G.S.2
Allara, D.L.3
Garoff, S.4
-
14
-
-
33645101606
-
-
J. P. Rabe, J. D. Swalen, J. F. Rabolt, J. Chem. Phys. 86, 1601 (1987); L. Rothberg, G. S. Higashi, D. L. Allara, S. Garoff, Chem. Phys. Lett. 133, 67 (1987); T. Hasegawa, S. Takeda, A. Kawaguchi, J. Umemura, Langmuir 11, 1236 (1995).
-
(1995)
Langmuir
, vol.11
, pp. 1236
-
-
Hasegawa, T.1
Takeda, S.2
Kawaguchi, A.3
Umemura, J.4
-
17
-
-
0024001552
-
-
M. R. Buhaenko, M. J. Grundy, R. M. Richardson, S. J. Roser, ibid. 159, 253 (1988); Y. Sasanuma, Y. Kitano, A. Ishitani, H. Nakahara, K. Fukuda, ibid. 199, 359 (1991).
-
(1988)
Thin Solid Films
, vol.159
, pp. 253
-
-
Buhaenko, M.R.1
Grundy, M.J.2
Richardson, R.M.3
Roser, S.J.4
-
18
-
-
0026139312
-
-
M. R. Buhaenko, M. J. Grundy, R. M. Richardson, S. J. Roser, ibid. 159, 253 (1988); Y. Sasanuma, Y. Kitano, A. Ishitani, H. Nakahara, K. Fukuda, ibid. 199, 359 (1991).
-
(1991)
Thin Solid Films
, vol.199
, pp. 359
-
-
Sasanuma, Y.1
Kitano, Y.2
Ishitani, A.3
Nakahara, H.4
Fukuda, K.5
-
20
-
-
0026897694
-
-
D. K. Schwartz, J. Garnaes, R. Viswanathan, J. A. N. Zasadzinski, Science 257, 508 (1992); D. K. Schwartz, J. Garnaes, R. Viswanathan, S. Chiruvolu, J. A. N. Zasadzinski, Phys. Rev. E 47, 452 (1993).
-
(1992)
Science
, vol.257
, pp. 508
-
-
Schwartz, D.K.1
Garnaes, J.2
Viswanathan, R.3
Zasadzinski, J.A.N.4
-
21
-
-
0000059025
-
-
D. K. Schwartz, J. Garnaes, R. Viswanathan, J. A. N. Zasadzinski, Science 257, 508 (1992); D. K. Schwartz, J. Garnaes, R. Viswanathan, S. Chiruvolu, J. A. N. Zasadzinski, Phys. Rev. E 47, 452 (1993).
-
(1993)
Phys. Rev. E
, vol.47
, pp. 452
-
-
Schwartz, D.K.1
Garnaes, J.2
Viswanathan, R.3
Chiruvolu, S.4
Zasadzinski, J.A.N.5
-
22
-
-
0027114177
-
-
J. Garnaes, D. K. Schwartz, R. Viswanathan, J. A. N. Zasadzinski, Nature 357, 54 (1992).
-
(1992)
Nature
, vol.357
, pp. 54
-
-
Garnaes, J.1
Schwartz, D.K.2
Viswanathan, R.3
Zasadzinski, J.A.N.4
-
23
-
-
1842295163
-
-
note
-
2 subphase (Millipore water was used), adjusted to pH = 6.5, and contained in a Nima (Coventry, England) LB trough. Imaging was performed with the use of a Nanoscope III Multimode atomic force microscope (Digital Instruments) in contact mode using a silicon nitride cantilever with integral tip. The equilibrium deflection of a given cantilever was quite sensitive to temperature; therefore, the tip was withdrawn before large temperature jumps and re-engaged after the temperature had stabilized. A small thermoelectric Peltier element (Melcor, Trenton, NJ) and a thermocouple (Omega Engineering, Stanford, CT) were sandwiched between a magnetic stainless steel base and a small piece of copper sheet and bonded together with thermally conductive epoxy. The entire assembly was less than 5 mm thick and 12 mm in cross section. Extremely thin and flexible electrical leads were carefully strain-relieved to avoid transmission of vibrations to the microscope. Over the usable temperature range of the device, 20° to 120°C, the scanner temperature remained below 35°C, minimizing difficulties associated with thermal drift. A previously reported temperature-controlled microstage (16) functioned only below 80°C. Several important control experiments were performed to validate the technique. Invariant molecular-resolution images of mica substrates were obtained to well above 100°C. High-resolution images of all three types of structure were quantitatively consistent after changing the scan size or rate, rotating the scan direction, or annealing at constant temperature for hours. The surface structure changed at the same temperature in nine separate repetitions of the experiment (using different samples and AFM tips) and reversibly changed back upon lowering of the temperature while using the same tip. On one occasion, we were even able to maintain the tip in contact with the film during this thermal cycling and continuously observed the loss and then reappearance of molecular order. These experiments prove that the loss of molecular resolution was due to increased molecular disorder, not degradation of a particular tip, and that the images represent structure indigenous to the sample, not related to temporal noise or induced by scanning.
-
-
-
-
27
-
-
0012127705
-
-
R. M. Gendreau, Ed. CRC Press, Boca Raton, FL
-
D. G. Cameron and R. A. Dluhy, in Spectroscopy in the Biomedical Sciences, R. M. Gendreau, Ed. (CRC Press, Boca Raton, FL, 1986), pp. 53-86.
-
(1986)
Spectroscopy in the Biomedical Sciences
, pp. 53-86
-
-
Cameron, D.G.1
Dluhy, R.A.2
-
28
-
-
1842291555
-
-
note
-
Transmission IR spectra were recorded with the use of a Mattson Cygnus 100 spectrometer with a 6.4-mm pinhole defining the incident beam. The sample holder was heated using a thin film resistive heating element (Minco, Minneapolis, MN); the temperature was measured with a thermocouple (Omega). After obtaining the multilayer spectrum, the sample holder was removed and placed in an ultraviolet-oxygen cleaner (Boekel Industries, Feasterville, PA), where the film on both sides of the substrate was removed. The holder was then repositioned within the spectrometer, to within 0.1 mm of the original position, and the background spectrum was measured.
-
-
-
-
29
-
-
0000237528
-
-
C.-Y. Chao, C.-F. Chou, J. T. Ho, A. Jin, C. C. Huang, Phys. Rev. Lett. 77, 2750 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 2750
-
-
Chao, C.-Y.1
Chou, C.-F.2
Ho, J.T.3
Jin, A.4
Huang, C.C.5
-
30
-
-
1842330303
-
-
note
-
We thank D. R. Nelson for his helpful comments regarding 2D melting. This work was supported by the National Science Foundation (NSF), the donors of the Petroleum Research Fund, and the Center for Photoinduced Processes (funded by NSF and the Louisiana Board of Regents).
-
-
-
|