-
1
-
-
10044247612
-
Lecture notes on optimal transport problems
-
In Mathematical aspects of evolving interfaces, Springer-Verlag
-
L. Ambrosio. Lecture notes on optimal transport problems. In Mathematical aspects of evolving interfaces, volume 1812 of Lecture Notes in Mathematics, pages 1-52. Springer-Verlag, 2003.
-
(2003)
Lecture Notes in Mathematics
, vol.1812
, pp. 1-52
-
-
Ambrosio, L.1
-
2
-
-
0001510095
-
Characterization of optimal shapes and masses through Monge-Kantorovich equation
-
G. Buttazzo and G. Bouchitté. Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. European Math. Soc., 3:139-168, 2001.
-
(2001)
J. European Math. Soc.
, vol.3
, pp. 139-168
-
-
Buttazzo, G.1
Bouchitté, G.2
-
3
-
-
0035587669
-
Topological equivalence of some variational problems involving distances
-
G. Buttazzo, L. De Pascale, and I. Fragalà. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 7(2):247-258, 2001.
-
(2001)
Discrete and Continuous Dynamical Systems
, vol.7
, Issue.2
, pp. 247-258
-
-
Buttazzo, G.1
De Pascale, L.2
Fragalà, I.3
-
4
-
-
2942521170
-
On regularity of transport density in the Monge-Kantorovich problem
-
G. Buttazzo and E. Stepanov. On regularity of transport density in the Monge-Kantorovich problem. SIAM J. Control Optim., 42(3):1044-1055, 2003.
-
(2003)
SIAM J. Control Optim.
, vol.42
, Issue.3
, pp. 1044-1055
-
-
Buttazzo, G.1
Stepanov, E.2
-
5
-
-
0036001762
-
Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs
-
L. Caffarelli, M. Feldman, and R.J. McCann. Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs. J. Amer. Math. Soc., 15:1-206, 2002.
-
(2002)
J. Amer. Math. Soc.
, vol.15
, pp. 1-206
-
-
Caffarelli, L.1
Feldman, M.2
McCann, R.J.3
-
6
-
-
0003211244
-
Convex analysis and measurable multifunction
-
Springer-Verlag, Berlin
-
C. Castaing and M. Valadier. Convex analysis and measurable multifunction, volume 580 of Lecture notes in mathematics. Springer-Verlag, Berlin, 1977.
-
(1977)
Lecture Notes in Mathematics
, vol.580
-
-
Castaing, C.1
Valadier, M.2
-
7
-
-
0036556947
-
Regularity properties for Monge transport density and for solutions of some shape optimization problems
-
L. De Pascale and A. Pratelli. Regularity properties for Monge transport density and for solutions of some shape optimization problems. Calc. Var. Partial Diff. Equations, 14(3) :249-274, 2002.
-
(2002)
Calc. Var. Partial Diff. Equations
, vol.14
, Issue.3
, pp. 249-274
-
-
De Pascale, L.1
Pratelli, A.2
-
8
-
-
12844272812
-
Sharp summability for Monge transport density via interpolation
-
to appear.
-
L. De Pascale and A. Pratelli. Sharp summability for Monge transport density via interpolation. ESAIM Control Optim. Calc. Var., 10, 2004. to appear.
-
(2004)
ESAIM Control Optim. Calc. Var.
, vol.10
-
-
De Pascale, L.1
Pratelli, A.2
-
9
-
-
0032622583
-
Differential equations methods for the Monge-Kantorovich mass transfer problem
-
L. C. Evans and W. Gangbo. Differential equations methods for the Monge-Kantorovich mass transfer problem. Memoirs of the A.M.S., 137(653), 1999.
-
(1999)
Memoirs of the A.M.S.
, vol.137
, Issue.653
-
-
Evans, L.C.1
Gangbo, W.2
-
11
-
-
0012941703
-
Growth of a sandpile around an obstacle
-
L.A. Caffarelli and M. Milman, number 226 in Contemporary Mathematics, Providence, RI, American Math. Soc.
-
M. Feldman. Growth of a sandpile around an obstacle. In L.A. Caffarelli and M. Milman, editors, Monge Ampère equation: application to geometry and optimization (Deerfield Beach, FL, 1997), number 226 in Contemporary Mathematics, pages 55-78, Providence, RI, 1999. American Math. Soc.
-
(1999)
Monge Ampère Equation: Application to Geometry and Optimization (Deerfield Beach, FL, 1997)
, pp. 55-78
-
-
Feldman, M.1
-
12
-
-
0033456395
-
Variational evolution problems and nonlocal geometric motion
-
M. Feldman. Variational evolution problems and nonlocal geometric motion. Arch. Rat. Mech. Anal., 146:221-274, 1999.
-
(1999)
Arch. Rat. Mech. Anal.
, vol.146
, pp. 221-274
-
-
Feldman, M.1
-
13
-
-
0036706666
-
Uniqueness and transport density in Monge's mass transportation problem
-
M. Feldman and R.J. McCann. Uniqueness and transport density in Monge's mass transportation problem. Calc. Var. Partial Differential Equations, 15(1):81-113, 2002.
-
(2002)
Calc. Var. Partial Differential Equations
, vol.15
, Issue.1
, pp. 81-113
-
-
Feldman, M.1
McCann, R.J.2
-
14
-
-
0000334581
-
On the fundamental ideas of measure theory
-
in Russian.
-
V.A. Rokhlin. On the fundamental ideas of measure theory. Mat. Sbornik, 67(1):107-150, 1949. in Russian.
-
(1949)
Mat. Sbornik
, vol.67
, Issue.1
, pp. 107-150
-
-
Rokhlin, V.A.1
-
15
-
-
18144404474
-
-
English transl.
-
English transl.: Amer. Math. Soc. Transl., 10 (1962), no. 1, 1-54.
-
(1962)
Amer. Math. Soc. Transl.
, vol.10
, Issue.1
, pp. 1-54
-
-
|