-
1
-
-
0013001322
-
-
Presented in a lecture by Kircheim at the Scuola Normale Superiori workshop, October 27, See also [2, Remark 6.1]
-
G. Alberti, B. Kircheim and D. Preiss. Presented in a lecture by Kircheim at the Scuola Normale Superiori workshop, October 27, 2000. See also [2, Remark 6.1].
-
(2000)
-
-
Alberti, G.1
Kircheim, B.2
Preiss, D.3
-
3
-
-
0000810838
-
Sharp uniform convexity and smoothness inequalities for trace norms
-
K. Ball, E.A. Carlen, and E.H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115 (1994) 463-482.
-
(1994)
Invent. Math.
, vol.115
, pp. 463-482
-
-
Ball, K.1
Carlen, E.A.2
Lieb, E.H.3
-
4
-
-
0012944282
-
A continuous model of transportation
-
M. Beckmann. A continuous model of transportation. Econometrica 20 (1952) 643-660.
-
(1952)
Econometrica
, vol.20
, pp. 643-660
-
-
Beckmann, M.1
-
5
-
-
0031138841
-
Shape optimization solutions via Monge-Kantorovich equation
-
G. Bouchitte, G. Buttazzo, P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation. C. R. Acad. Sci. Paris Ser. I Math. 324 (1997), no. 10, 1185-1191.
-
(1997)
C. R. Acad. Sci. Paris Ser. I Math.
, vol.324
, Issue.10
, pp. 1185-1191
-
-
Bouchitte, G.1
Buttazzo, G.2
Seppecher, P.3
-
6
-
-
0036001762
-
Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs
-
L. Caffarelli, M. Feldman, R.J. McCann. Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs. To appear in J. Amer. Math. Soc.
-
J. Amer. Math. Soc.
-
-
Caffarelli, L.1
Feldman, M.2
McCann, R.J.3
-
7
-
-
0013036207
-
Regularity properties for Monge transport density and for solutions of some shape optimization problem
-
L. de Pascale and A. Pratelli. Regularity properties for Monge transport density and for solutions of some shape optimization problem. To appear in Calc. Var.
-
Calc. Var.
-
-
De Pascale, L.1
Pratelli, A.2
-
8
-
-
0003073688
-
Partial differential equations and Monge-Kantorovich mass transfer
-
R. Bott et al., editor, International Press, Cambridge
-
L.C. Evans. Partial differential equations and Monge-Kantorovich mass transfer. In R. Bott et al., editor, Current Developments in Mathematics, pages 26-78. International Press, Cambridge, 1997.
-
(1997)
Current Developments in Mathematics
, pp. 26-78
-
-
Evans, L.C.1
-
9
-
-
0032622583
-
Differential equations methods for the Monge-Kantorovich mass transfer problem
-
L.C. Evans and W. Gangbo. Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999) 1-66.
-
(1999)
Mem. Amer. Math. Soc.
, vol.137
, pp. 1-66
-
-
Evans, L.C.1
Gangbo, W.2
-
13
-
-
0033456395
-
Variational evolution problems and nonlocal geometric motion
-
M. Feldman. Variational evolution problems and nonlocal geometric motion. Arch. Rat. Mech. Anal. 146 (1999) 221-274.
-
(1999)
Arch. Rat. Mech. Anal.
, vol.146
, pp. 221-274
-
-
Feldman, M.1
-
14
-
-
0012941703
-
Growth of a sandpile around an obstacle
-
L.A. Caffarelli and M. Milman, editors, Monge Ampere Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997), number 226, American Mathematical Society, Providence
-
M. Feldman. Growth of a sandpile around an obstacle. In L.A. Caffarelli and M. Milman, editors, Monge Ampere Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997), number 226 in Contemp. Math., pages 55-78. American Mathematical Society, Providence, 1999.
-
(1999)
Contemp. Math.
, pp. 55-78
-
-
Feldman, M.1
-
16
-
-
0001103156
-
The geometry of optimal transportation
-
W. Gangbo and R.J. McCann. The geometry of optimal transportation. Acta Math. 177 (1996) 113-161.
-
(1996)
Acta Math.
, vol.177
, pp. 113-161
-
-
Gangbo, W.1
McCann, R.J.2
-
17
-
-
0012987124
-
Theory of flows in continua as approximation to flows in networks
-
North-Holland, Amsterdam-Oxford-New York
-
M. Iri. Theory of flows in continua as approximation to flows in networks. Survey of mathematical programming (Proc. Ninth Internat. Math. Programming Sympos., Budapest, 1976), Vol. 2, pp. 263-278, North-Holland, Amsterdam-Oxford-New York, 1979.
-
(1979)
Survey of Mathematical Programming (Proc. Ninth Internat. Math. Programming Sympos., Budapest, 1976)
, vol.2
, pp. 263-278
-
-
Iri, M.1
-
19
-
-
0001393149
-
On the translocation of masses
-
C.R. (Doklady)
-
L. Kantorovich. On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942) 199-201.
-
(1942)
Acad. Sci. URSS (N.S.)
, vol.37
, pp. 199-201
-
-
Kantorovich, L.1
-
20
-
-
84974004014
-
Existence and uniqueness of monotone measure-preserving maps
-
R.J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309-323.
-
(1995)
Duke Math. J.
, vol.80
, pp. 309-323
-
-
McCann, R.J.1
-
21
-
-
0001429058
-
Exact Solutions to the transportation problem on the Line
-
R.J. McCann. Exact Solutions to the Transportation Problem on the Line. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 1341-1380.
-
(1999)
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.
, vol.455
, pp. 1341-1380
-
-
McCann, R.J.1
-
23
-
-
0010078599
-
Mass transportation problems
-
Springer-Verlag, New York
-
S.T. Rachev and L. Rüschendorf. Mass Transportation Problems. Probab. Appl. Springer-Verlag, New York, 1998.
-
(1998)
Probab. Appl.
-
-
Rachev, S.T.1
Rüschendorf, L.2
-
26
-
-
4243607361
-
∞ approximation of vector fields in the plane. Nonlinear partial differential equations in applied science (Tokyo, 1982)
-
North-Holland, Amsterdam-New York
-
∞ approximation of vector fields in the plane. Nonlinear partial differential equations in applied science (Tokyo, 1982), pages 273-288, North-Holland Math. Stud., 81, North-Holland, Amsterdam-New York, 1983.
-
(1983)
North-Holland Math. Stud.
, vol.81
, pp. 273-288
-
-
Strang, G.1
-
27
-
-
0020764041
-
Maximal flow through a domain
-
G. Strang. Maximal flow through a domain. Math. Programming 26 (1983), no. 2, 123-143.
-
(1983)
Math. Programming
, vol.26
, Issue.2
, pp. 123-143
-
-
Strang, G.1
-
28
-
-
0003299763
-
Geometric problems in the theory of infinite-dimensional probability distributions
-
V.N. Sudakov. Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141 (1979) 1-178.
-
(1979)
Proc. Steklov Inst. Math.
, vol.141
, pp. 1-178
-
-
Sudakov, V.N.1
-
30
-
-
0001823116
-
On the Monge mass transfer problem
-
N.S. Trudinger, X.-J. Wang. On the Monge mass transfer problem. Calc. Var. 13 (2001) 19-31.
-
(2001)
Calc. Var.
, vol.13
, pp. 19-31
-
-
Trudinger, N.S.1
Wang, X.-J.2
|