메뉴 건너뛰기




Volumn 185, Issue 2-4, 2005, Pages 177-193

On the use of stationary versus hidden Markov models to detect simple versus complex ecological dynamics

Author keywords

Akaike's Information Criteria; Bayesian Information Criteria; Ecological processes; Hidden Markov; Hidden state sequence; Log likelihood; Species response; Stationary Markov

Indexed keywords

DYNAMICS; MARKOV PROCESSES;

EID: 17644421875     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2004.11.021     Document Type: Article
Times cited : (18)

References (67)
  • 1
    • 0033115274 scopus 로고    scopus 로고
    • Applications of hidden Markov chains in image analysis
    • K. Aas, L. Eikvil, and R. Huseby Applications of hidden Markov chains in image analysis Pattern Recognit. 32 1999 703 713
    • (1999) Pattern Recognit. , vol.32 , pp. 703-713
    • Aas, K.1    Eikvil, L.2    Huseby, R.3
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. Petrov F. Cáski Budapest, Akademiai Kaidó
    • H. Akaike Information theory and an extension of the maximum likelihood principle B. Petrov F. Cáski Second International Symposium on Information Theory Budapest, Akademiai Kaidó 1973 267 281
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0034031403 scopus 로고    scopus 로고
    • Fundamentals of vegetation change: Complexity rules
    • M. Anand Fundamentals of vegetation change: complexity rules Acta Biotheor. 48 2000 1 14
    • (2000) Acta Biotheor. , vol.48 , pp. 1-14
    • Anand, M.1
  • 4
    • 0034724075 scopus 로고    scopus 로고
    • Markov chain models for vegetation dynamics
    • H. Balzter Markov chain models for vegetation dynamics Ecol. Model. 126 2000 139 154
    • (2000) Ecol. Model. , vol.126 , pp. 139-154
    • Balzter, H.1
  • 5
    • 0001862769 scopus 로고
    • An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
    • L. Baum An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes Inequalities 3 1972 1 8
    • (1972) Inequalities , vol.3 , pp. 1-8
    • Baum, L.1
  • 6
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology
    • L. Baum, and J. Egon An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology Bull. Am. Math. Soc. 73 1967 360 363
    • (1967) Bull. Am. Math. Soc. , vol.73 , pp. 360-363
    • Baum, L.1    Egon, J.2
  • 7
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic functions of finite state Markov chains
    • L. Baum, and T. Petrie Statistical inference for probabilistic functions of finite state Markov chains Ann. Math. Stat. 37 1966 1554 1563
    • (1966) Ann. Math. Stat. , vol.37 , pp. 1554-1563
    • Baum, L.1    Petrie, T.2
  • 8
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L. Baum, T. Petrie, G. Soules, and N. Weiss A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains Ann. Math. Stat. 41 1 1970 164 171
    • (1970) Ann. Math. Stat. , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 9
    • 84972571328 scopus 로고
    • Growth functions for transformations on manifolds
    • L. Baum, and G. Sell Growth functions for transformations on manifolds Pac. J. Math. 27 2 1968 211 227
    • (1968) Pac. J. Math. , vol.27 , Issue.2 , pp. 211-227
    • Baum, L.1    Sell, G.2
  • 11
    • 0000695914 scopus 로고
    • Is succession in hardwood forests a stationary Markov process?
    • C. Binkley Is succession in hardwood forests a stationary Markov process? Forest Sci. 26 1980 566 570
    • (1980) Forest Sci. , vol.26 , pp. 566-570
    • Binkley, C.1
  • 12
    • 0035971405 scopus 로고    scopus 로고
    • Modelling succession to include a herbivore effect
    • S. Blatt, J. Janmaat, and R. Harmsen Modelling succession to include a herbivore effect Ecol. Model. 139 2001 123 136
    • (2001) Ecol. Model. , vol.139 , pp. 123-136
    • Blatt, S.1    Janmaat, J.2    Harmsen, R.3
  • 13
    • 1542548177 scopus 로고    scopus 로고
    • A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis
    • M. Borsuk, C. Stow, and K. Reckhow A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis Ecol. Model. 173 2004 219 239
    • (2004) Ecol. Model. , vol.173 , pp. 219-239
    • Borsuk, M.1    Stow, C.2    Reckhow, K.3
  • 14
    • 0030436566 scopus 로고    scopus 로고
    • Revealing dynamics of ecological systems from natural recordings
    • G. Boudjema, and N. Chau Revealing dynamics of ecological systems from natural recordings Ecol. Model. 91 1996 15 23
    • (1996) Ecol. Model. , vol.91 , pp. 15-23
    • Boudjema, G.1    Chau, N.2
  • 15
    • 0003531950 scopus 로고    scopus 로고
    • Coupled hidden Markov models for modeling interacting processes
    • Media Lab Perceptual Computing, MIT.
    • Brand, M., 1997. Coupled hidden Markov models for modeling interacting processes. Tech. Rep. Learning and Common Sense Technical Report 405, Media Lab Perceptual Computing, MIT.
    • (1997) Tech. Rep. Learning and Common Sense Technical Report 405
    • Brand, M.1
  • 16
    • 0036689597 scopus 로고    scopus 로고
    • On reducing the statespace of hidden Markov models for the identity by decent process
    • S. Browning, and B. Browning On reducing the statespace of hidden Markov models for the identity by decent process Theor. Popul. Biol. 62 2002 1 8
    • (2002) Theor. Popul. Biol. , vol.62 , pp. 1-8
    • Browning, S.1    Browning, B.2
  • 17
    • 0032536909 scopus 로고    scopus 로고
    • Comparison of Markovian matrix models of a primary successional plant community
    • W. Childress, C. Crisafulli, and E. Rykiel Comparison of Markovian matrix models of a primary successional plant community Ecol. Model. 107 1998 93 102
    • (1998) Ecol. Model. , vol.107 , pp. 93-102
    • Childress, W.1    Crisafulli, C.2    Rykiel, E.3
  • 19
    • 0042041456 scopus 로고
    • On using Horn's Markov succession model
    • D. Culver On using Horn's Markov succession model Am. Nat. 117 1981 572 574
    • (1981) Am. Nat. , vol.117 , pp. 572-574
    • Culver, D.1
  • 20
    • 0036837564 scopus 로고    scopus 로고
    • Assessing impacts of small perturbations using a model-based approach
    • M. Dale, P. Dale, C. Li, and G. Biswas Assessing impacts of small perturbations using a model-based approach Ecol. Model. 156 2002 185 199
    • (2002) Ecol. Model. , vol.156 , pp. 185-199
    • Dale, M.1    Dale, P.2    Li, C.3    Biswas, G.4
  • 21
    • 0037371763 scopus 로고    scopus 로고
    • Qualitative predictions in model ecosystems
    • J. Dambacher, H. Li, and P. Rossignol Qualitative predictions in model ecosystems Ecol. Model. 161 2003 79 93
    • (2003) Ecol. Model. , vol.161 , pp. 79-93
    • Dambacher, J.1    Li, H.2    Rossignol, P.3
  • 23
    • 0000048410 scopus 로고    scopus 로고
    • An application of hidden Markov models to asset allocation problems
    • R. Elliot, and J. van der Hoek An application of hidden Markov models to asset allocation problems Finance Stochastics 1 1997 229 238
    • (1997) Finance Stochastics , vol.1 , pp. 229-238
    • Elliot, R.1    Van Der Hoek, J.2
  • 25
    • 0842332874 scopus 로고    scopus 로고
    • Modelling forest-savanna mosaic dynamics in man-influenced environments: Effects of fire, climate and soil heterogeneity
    • C. Favier, J. Chave, A. Fabing, D. Schwartz, and M. Dubois Modelling forest-savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity Ecol. Model. 171 2004 85 102
    • (2004) Ecol. Model. , vol.171 , pp. 85-102
    • Favier, C.1    Chave, J.2    Fabing, A.3    Schwartz, D.4    Dubois, M.5
  • 26
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden Markov model: Analysis and applications
    • S. Fine, Y. Singer, and N. Tishby The hierarchical hidden Markov model: analysis and applications Machine Learn. 32 1998 41 62
    • (1998) Machine Learn. , vol.32 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 27
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • G. Forney The Viterbi algorithm Proc. IEEE 61 1973 268
    • (1973) Proc. IEEE , vol.61 , pp. 268
    • Forney, G.1
  • 28
    • 0033849275 scopus 로고    scopus 로고
    • Population numbers count: Tools for near-term demographic analysis
    • G. Fox, and J. Gurevitch Population numbers count: tools for near-term demographic analysis Am. Nat. 156 2000 242 256
    • (2000) Am. Nat. , vol.156 , pp. 242-256
    • Fox, G.1    Gurevitch, J.2
  • 29
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Z. Ghahramani Factorial hidden Markov models Machine Learn. 29 1997 245 275
    • (1997) Machine Learn. , vol.29 , pp. 245-275
    • Ghahramani, Z.1
  • 31
    • 0035247059 scopus 로고    scopus 로고
    • An introduction to hidden Markov models and Bayesian networks
    • Z. Ghahramani An introduction to hidden Markov models and Bayesian networks Int. J. Pattern Recognit. Artif. Intell. 15 1 2001 9 42
    • (2001) Int. J. Pattern Recognit. Artif. Intell. , vol.15 , Issue.1 , pp. 9-42
    • Ghahramani, Z.1
  • 32
    • 0032928948 scopus 로고    scopus 로고
    • Linking an ecosystem model and a landscape model to study forest species response to climate warming
    • H. He, D. Mladenoff, and T. Crow Linking an ecosystem model and a landscape model to study forest species response to climate warming Ecol. Model. 114 1999 213 233
    • (1999) Ecol. Model. , vol.114 , pp. 213-233
    • He, H.1    Mladenoff, D.2    Crow, T.3
  • 33
    • 0012760634 scopus 로고    scopus 로고
    • Using hidden Markov chains and empirical Bayes change-point estimation for transect data
    • J.V. Hoef, and N. Cressie Using hidden Markov chains and empirical Bayes change-point estimation for transect data Environ. Ecol. Stat. 4 1997 247 264
    • (1997) Environ. Ecol. Stat. , vol.4 , pp. 247-264
    • Hoef, J.V.1    Cressie, N.2
  • 34
    • 0002487299 scopus 로고
    • Markovian properties of forest succession
    • Harvard University Press Massachusetts, USA
    • H. Horn Markovian properties of forest succession Ecology and Evolution of Communities 1975 Harvard University Press Massachusetts, USA 196 211
    • (1975) Ecology and Evolution of Communities , pp. 196-211
    • Horn, H.1
  • 35
    • 0002985048 scopus 로고
    • On the dynamics of vegetation: Markov chains as models of succession
    • R. Hulst On the dynamics of vegetation: Markov chains as models of succession Vegetatio 40 1979 3 14
    • (1979) Vegetatio , vol.40 , pp. 3-14
    • Hulst, R.1
  • 36
    • 0022018101 scopus 로고
    • A probabilistic distance measure for hidden Markov models
    • AT&T Bell Laboratories.
    • Juang, B.-H., Rabiner, L., 1985. A probabilistic distance measure for hidden Markov models. Tech. Rep. 64 (2). AT&T Bell Laboratories.
    • (1985) Tech. Rep. , vol.64 , Issue.2
    • Juang, B.-H.1    Rabiner, L.2
  • 39
    • 0035419830 scopus 로고    scopus 로고
    • Succession in mixed boreal forest of Russia: Markov models and non-Markov effects
    • V. Korotkov, D. Logofet, and M. Loreau Succession in mixed boreal forest of Russia: Markov models and non-Markov effects Ecol. Model. 142 2001 25 38
    • (2001) Ecol. Model. , vol.142 , pp. 25-38
    • Korotkov, V.1    Logofet, D.2    Loreau, M.3
  • 40
    • 77956964275 scopus 로고    scopus 로고
    • An introduction to hidden Markov models for biological sequences
    • Elsevier Science
    • A. Krogh An introduction to hidden Markov models for biological sequences Computational Methods in Molecular Biology 1998 Elsevier Science 45 63
    • (1998) Computational Methods in Molecular Biology , pp. 45-63
    • Krogh, A.1
  • 41
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • A. Krogh, M. Brown, I. Mian, and D. Haussler Hidden Markov models in computational biology: applications to protein modeling J. Mol. Biol. 235 1994 1501 1531
    • (1994) J. Mol. Biol. , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.3    Haussler, D.4
  • 42
    • 0005909007 scopus 로고
    • A Markovian approach to the study of heath vegetation dynamics
    • C. Legg A Markovian approach to the study of heath vegetation dynamics Bull. Ecol. 11 1980 393 404
    • (1980) Bull. Ecol. , vol.11 , pp. 393-404
    • Legg, C.1
  • 43
    • 0028891858 scopus 로고
    • Stability analysis of a nonhomogenous Markovian landscape model
    • B.-L. Li Stability analysis of a nonhomogenous Markovian landscape model Ecol. Model. 82 1995 247 256
    • (1995) Ecol. Model. , vol.82 , pp. 247-256
    • Li, B.-L.1
  • 44
    • 0022165304 scopus 로고
    • Markov models and succession: A test from a heathland in the Netherlands
    • E. Lippe, J. DeSmidt, and D. Glenn-Lewin Markov models and succession: a test from a heathland in the Netherlands J. Ecol. 73 1985 775 791
    • (1985) J. Ecol. , vol.73 , pp. 775-791
    • Lippe, E.1    Desmidt, J.2    Glenn-Lewin, D.3
  • 45
    • 0034723982 scopus 로고    scopus 로고
    • The mathematics of Markov models: What Markov chains can really predict in forest successions
    • D. Logofet, and E. Lesnaya The mathematics of Markov models: what Markov chains can really predict in forest successions Ecol. Model. 126 2000 258 298
    • (2000) Ecol. Model. , vol.126 , pp. 258-298
    • Logofet, D.1    Lesnaya, E.2
  • 46
    • 0034734943 scopus 로고    scopus 로고
    • Incorporating uncertainty into parameters of a forest process model
    • D. MacFarlane, E. Green, and H. Valentine Incorporating uncertainty into parameters of a forest process model Ecol. Model. 134 2000 27 40
    • (2000) Ecol. Model. , vol.134 , pp. 27-40
    • MacFarlane, D.1    Green, E.2    Valentine, H.3
  • 47
    • 0024195524 scopus 로고
    • Markovian dynamics of simple and complex desert plant communities
    • J. McAuliffe Markovian dynamics of simple and complex desert plant communities Am. Nat. 131 1988 459 490
    • (1988) Am. Nat. , vol.131 , pp. 459-490
    • McAuliffe, J.1
  • 48
    • 0002532881 scopus 로고
    • Markov chain: A realistic model for temporal coenosere?
    • L. Orlóci, M. Anand, and X. He Markov chain: a realistic model for temporal coenosere? Biometrie-Praximetrie 33 1993 7 26
    • (1993) Biometrie-Praximetrie , vol.33 , pp. 7-26
    • Orlóci, L.1    Anand, M.2    He, X.3
  • 49
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proc. IEEE 77 2 1989 257 285
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.1
  • 50
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen Modeling by shortest data description Automatica 14 1978 465 471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 51
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Stat. 6 1978 461 464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 52
    • 0036386424 scopus 로고    scopus 로고
    • A hidden Markov chain model for the term structure of bond credit risk spreads
    • L. Thomas, D. Allen, and N. Morkel-Kingsbury A hidden Markov chain model for the term structure of bond credit risk spreads Int. Rev. Finan. Anal. 11 2002 311 329
    • (2002) Int. Rev. Finan. Anal. , vol.11 , pp. 311-329
    • Thomas, L.1    Allen, D.2    Morkel-Kingsbury, N.3
  • 53
    • 0037466482 scopus 로고    scopus 로고
    • A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. Part 1. Model calibration using a Bayesian approach
    • M. Thyer, and G. Kuczera A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. Part 1. Model calibration using a Bayesian approach J. Hydrol. 275 2003 12 26
    • (2003) J. Hydrol. , vol.275 , pp. 12-26
    • Thyer, M.1    Kuczera, G.2
  • 54
    • 0037466501 scopus 로고    scopus 로고
    • A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. Part 2. Real data analysis
    • M. Thyer, and G. Kuczera A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. Part 2. Real data analysis J. Hydrol. 275 2003 27 48
    • (2003) J. Hydrol. , vol.275 , pp. 27-48
    • Thyer, M.1    Kuczera, G.2
  • 55
    • 0042569120 scopus 로고    scopus 로고
    • The use of matrix models to detect natural and pollution-induced forest gradients
    • B. Tucker, and M. Anand The use of matrix models to detect natural and pollution-induced forest gradients Community Ecol. 4 1 2003 89 110
    • (2003) Community Ecol. , vol.4 , Issue.1 , pp. 89-110
    • Tucker, B.1    Anand, M.2
  • 56
    • 0002851795 scopus 로고
    • Modelling ecological succession, with particular reference to Markovian models
    • M. Usher Modelling ecological succession, with particular reference to Markovian models Vegetatio 46 1981 11 18
    • (1981) Vegetatio , vol.46 , pp. 11-18
    • Usher, M.1
  • 57
    • 0030613997 scopus 로고    scopus 로고
    • Canopy closure rate and forest structure
    • T. Valverde, and J. Silvertown Canopy closure rate and forest structure Ecology 78 1997 1555 1562
    • (1997) Ecology , vol.78 , pp. 1555-1562
    • Valverde, T.1    Silvertown, J.2
  • 58
    • 0028468324 scopus 로고
    • Hidden Markov models applied to vegetation dynamics using satellite remote sensing
    • N. Viovy, and G. Saint Hidden Markov models applied to vegetation dynamics using satellite remote sensing IEEE Transact. Geosci. Remote Sens. 32 1994 906 917
    • (1994) IEEE Transact. Geosci. Remote Sens. , vol.32 , pp. 906-917
    • Viovy, N.1    Saint, G.2
  • 59
    • 0036459116 scopus 로고    scopus 로고
    • Fitting hidden Markov models to phycological data
    • I. Visser, M. Raijmakers, and P. Molenaar Fitting hidden Markov models to phycological data Sci. Programming 10 2002 185 199
    • (2002) Sci. Programming , vol.10 , pp. 185-199
    • Visser, I.1    Raijmakers, M.2    Molenaar, P.3
  • 60
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • A. Viterbi Error bounds for convolutional codes and an asymptotically optimum decoding algorithm IEEE Transact. Inf. Theory IT-13 1967 260 269
    • (1967) IEEE Transact. Inf. Theory , vol.13 , pp. 260-269
    • Viterbi, A.1
  • 61
    • 0001532110 scopus 로고
    • Transition probabilities for a forest
    • P. Waggoner, and G. Stephens Transition probabilities for a forest Nature 225 1970 1160 1161
    • (1970) Nature , vol.225 , pp. 1160-1161
    • Waggoner, P.1    Stephens, G.2
  • 62
    • 0000208682 scopus 로고
    • Estimation and inference by compact coding
    • C. Wallace, and P. Freeman Estimation and inference by compact coding J. Royal Stat. Soc. B 49 1978 241 252
    • (1978) J. Royal Stat. Soc. B , vol.49 , pp. 241-252
    • Wallace, C.1    Freeman, P.2
  • 63
    • 0035427852 scopus 로고    scopus 로고
    • Classification of abnormal plant operation using multiple process variable trends
    • J. Wong, K. McDonald, and A. Palazoglu Classification of abnormal plant operation using multiple process variable trends J. Process Control 11 2001 409 418
    • (2001) J. Process Control , vol.11 , pp. 409-418
    • Wong, J.1    McDonald, K.2    Palazoglu, A.3
  • 64
    • 0035122173 scopus 로고    scopus 로고
    • Prediction in complex communities: Analysis of empirically derived markov models
    • J. Wootton Prediction in complex communities: analysis of empirically derived markov models Ecology 82 2001 580 598
    • (2001) Ecology , vol.82 , pp. 580-598
    • Wootton, J.1
  • 65
    • 3042767930 scopus 로고    scopus 로고
    • Transient population dynamics and short-term sensitivity analysis of matrix population models
    • J. Yearsley Transient population dynamics and short-term sensitivity analysis of matrix population models Ecol. Model. 177 2004 245 258
    • (2004) Ecol. Model. , vol.177 , pp. 245-258
    • Yearsley, J.1
  • 66
    • 0037090990 scopus 로고    scopus 로고
    • A spatially explicit stochastic model to simulate boreal forest cover transitions: General structure and properties
    • D. Yemshanov, and A. Perera A spatially explicit stochastic model to simulate boreal forest cover transitions: general structure and properties Ecol. Model. 150 2002 189 209
    • (2002) Ecol. Model. , vol.150 , pp. 189-209
    • Yemshanov, D.1    Perera, A.2
  • 67
    • 0035600580 scopus 로고    scopus 로고
    • Evaluating a model of forest succession using fuzzy analysis
    • J. Yoon, and A. Korvin Evaluating a model of forest succession using fuzzy analysis Stochastic Anal. Appl. 19 2001 893 901
    • (2001) Stochastic Anal. Appl. , vol.19 , pp. 893-901
    • Yoon, J.1    Korvin, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.