메뉴 건너뛰기




Volumn 44, Issue 11, 2005, Pages 1677-1679

Conformationally restricted aza-bodipy: A highly fluorescent, stable, near-infrared-absorbing dye

Author keywords

Dyes pigments; Fluorescence; Fluorescent probes; Imaging agents

Indexed keywords

CHROMOPHORES; CONFORMATIONS; ELECTROMAGNETIC WAVE ABSORPTION; FLUORESCENCE; INFRARED RADIATION; SOLVENTS;

EID: 17144403523     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/anie.200461868     Document Type: Article
Times cited : (273)

References (45)
  • 19
    • 4544333147 scopus 로고    scopus 로고
    • R. Reents, M. Wagner, J. Kuhlmann, H. Waldmann, Angew. Chem. 2004, 116, 2765; Angew. Chem. Int. Ed. 2004, 43, 2711.
    • (2004) Angew. Chem. Int. Ed. , vol.43 , pp. 2711
  • 22
    • 0037007871 scopus 로고    scopus 로고
    • H. Maas, G. Calzaferri, Angew. Chem. 2002, 114, 2389; Angew. Chem. Int. Ed. 2002, 41, 2284.
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 2284
  • 29
    • 0034665211 scopus 로고    scopus 로고
    • G. Beer, C. Niederalt, S. Grimme, J. Daub, Angew. Chem. 2000, 112, 3385; Angew. Chem. Int. Ed. 2000, 39, 3252.
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 3252
  • 37
    • 0035910598 scopus 로고    scopus 로고
    • b) K. Rurack, M. Kollmannsberger, J. Daub, Angew. Chem. 2001, 113, 396; Angew. Chem. Int. Ed. 2001, 40, 385.
    • (2001) Angew. Chem. Int. Ed. , vol.40 , pp. 385
  • 38
    • 0035903965 scopus 로고    scopus 로고
    • There have been reports of structurally rigidified bodipy dyes absorbing up to 766 nm. However, the efficiency of these systems is unclear as no fluorescence quantum yield has been documented. Notably, fusion and 3,5-diaryl substitution in these systems can result in a decreased fluorescence quantum yield (see ref. [19]); a) M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, Y. Urano, Tetrahedron Lett. 2001, 42, 6711; b) K. Tan, L. Jaquinod, R. Paolesse, S. Nardis, C. D. Natale, A. D. Carlo, L. Prodi, M. Montalti, K. M. Smith, Tetrahedron 2004, 60, 1099; c) Y. Wu, D. H. Klaubert, H. C. Kang, Y. Z. Zhang, US patent 6005113, 1999.
    • (2001) Tetrahedron Lett. , vol.42 , pp. 6711
    • Wada, M.1    Ito, S.2    Uno, H.3    Murashima, T.4    Ono, N.5    Urano, T.6    Urano, Y.7
  • 39
    • 0346339635 scopus 로고    scopus 로고
    • There have been reports of structurally rigidified bodipy dyes absorbing up to 766 nm. However, the efficiency of these systems is unclear as no fluorescence quantum yield has been documented. Notably, fusion and 3,5-diaryl substitution in these systems can result in a decreased fluorescence quantum yield (see ref. [19]); a) M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, Y. Urano, Tetrahedron Lett. 2001, 42, 6711; b) K. Tan, L. Jaquinod, R. Paolesse, S. Nardis, C. D. Natale, A. D. Carlo, L. Prodi, M. Montalti, K. M. Smith, Tetrahedron 2004, 60, 1099; c) Y. Wu, D. H. Klaubert, H. C. Kang, Y. Z. Zhang, US patent 6005113, 1999.
    • (2004) Tetrahedron , vol.60 , pp. 1099
    • Tan, K.1    Jaquinod, L.2    Paolesse, R.3    Nardis, S.4    Natale, C.D.5    Carlo, A.D.6    Prodi, L.7    Montalti, M.8    Smith, K.M.9
  • 40
    • 17144381989 scopus 로고    scopus 로고
    • US patent 6005113, 1999
    • There have been reports of structurally rigidified bodipy dyes absorbing up to 766 nm. However, the efficiency of these systems is unclear as no fluorescence quantum yield has been documented. Notably, fusion and 3,5-diaryl substitution in these systems can result in a decreased fluorescence quantum yield (see ref. [19]); a) M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, Y. Urano, Tetrahedron Lett. 2001, 42, 6711; b) K. Tan, L. Jaquinod, R. Paolesse, S. Nardis, C. D. Natale, A. D. Carlo, L. Prodi, M. Montalti, K. M. Smith, Tetrahedron 2004, 60, 1099; c) Y. Wu, D. H. Klaubert, H. C. Kang, Y. Z. Zhang, US patent 6005113, 1999.
    • Wu, Y.1    Klaubert, D.H.2    Kang, H.C.3    Zhang, Y.Z.4
  • 44
    • 0001728437 scopus 로고    scopus 로고
    • Fluorescence quantum yield measurements were performed on a Fluorolog-3 instrument (Model FL-3-22) equipped with an R928P photomultiplier tube which is sensitive up to ≈ 850 nm. To obtain accurate excitation spectra, the excitation monochromator was calibrated by a xenon-lamp scan. The emission monochromator was calibrated using a water Raman scan. The response of the detector was calibrated with a standard tungsten-halogen lamp. Fluorescence quantum yield determination was performed following the method recommended by the manufacturer of the fluorometer (see: www.jobinyvon.com/ usadivisions/Fluorescence/applications/quantumyieldstrad.pdf), and was compared with other reported methods (S. Fery-Forgues, D. Lavabre, J. Chem. Educ. 1999, 76, 1260). Compound 3 was used as standard, and the measurements were performed under identical conditions to those with 1. Nondegassed, spectroscopic-grade chloroform and a 10-mm quartz cuvette were used. Very dilute solutions (A ≤ 0.010) were used to minimize reabsorption effects. The optical densities of solutions of 1 and 3 were adjusted to 0.200 at 670 nm, and these solutions were diluted by factors of 20, 40, 60, 80, and 100. The excitation wavelength was 670 nm for both compound 1 and reference 3, and a 510-nm cutoff optical filter was placed between the excitation monochromator and sample cuvette to eliminate UV (335 nm) excitation. The fluorescence quantum yield of compound 1 was calculated to be 0.278 relative to the reference (0.36), which is comparable to the data obtained by the traditional method (0.284 ± 0.006).
    • (1999) J. Chem. Educ. , vol.76 , pp. 1260
    • Fery-Forgues, S.1    Lavabre, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.