-
1
-
-
12044254491
-
An integrable shallow water equation with peaked solitions
-
Camassa, R, and Holm, D. 1993. An integrable shallow water equation with peaked solitions. Phys. Rev. Lett, 71:1661–1664.
-
(1993)
Phys. Rev. Lett
, vol.71
, pp. 1661-1664
-
-
Camassa, R.1
Holm, D.2
-
2
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
Constantin, A, and Escher, J. 1998. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 181:229–243.
-
(1998)
Acta Math
, vol.181
, pp. 229-243
-
-
Constantin, A.1
Escher, J.2
-
3
-
-
0032374820
-
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
-
Constantin, A, and Escher, J. 1998. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math, 51:475–504.
-
(1998)
Comm. Pure Appl. Math
, vol.51
, pp. 475-504
-
-
Constantin, A.1
Escher, J.2
-
4
-
-
0034415062
-
Existence of permanent and breaking waves for a shallow water equation: A geometric approach
-
Constantin, A. 2000. Existence of permanent and breaking waves for a shallow water equation:a geometric approach. Ann. Inst. Fourier (Grenoble), 50:321–362.
-
(2000)
Ann. Inst. Fourier (Grenoble)
, vol.50
, pp. 321-362
-
-
Constantin, A.1
-
6
-
-
0042279206
-
On the geometric approach to the motion of inertial mechanical systems
-
Constantin, A, and Kolev, B. 2002. On the geometric approach to the motion of inertial mechanical systems. J. Phys. A, 35:R51–R79.
-
(2002)
J. Phys. A
, vol.35
, pp. R51-R79
-
-
Constantin, A.1
Kolev, B.2
-
7
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Constantin, A, and Kolev, B. 2003. Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv, 78:787–804.
-
(2003)
Comment. Math. Helv
, vol.78
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
10
-
-
0034349440
-
Global weak solutions for a shallow water equation
-
Constantin, A, and Molinet, L. 2000. Global weak solutions for a shallow water equation. Comm. Math. Phys, 211:45–61.
-
(2000)
Comm. Math. Phys
, vol.211
, pp. 45-61
-
-
Constantin, A.1
Molinet, L.2
-
11
-
-
85039409060
-
Finite propagation speed for the Camassa-Holm equation
-
Sweden: Lund University
-
Constantin, A. 2004. “ Finite propagation speed for the Camassa-Holm equation ”. In Preprint, Sweden:Lund University.
-
(2004)
Preprint
-
-
Constantin, A.1
-
12
-
-
0000830886
-
A few remarks on the Camassa-Holm equation
-
Danchin, R. 2001. A few remarks on the Camassa-Holm equation. Diff. Integr. Eqs, 14:953–988.
-
(2001)
Diff. Integr. Eqs
, vol.14
, pp. 953-988
-
-
Danchin, R.1
-
13
-
-
0002053850
-
Asymptotic integrability
-
Degasperis A., Gaeta G., (eds), World Scientific, River Edge, NJ, Rome, December 1998
-
Degasperis, A, and Procesi, M. 1999. “ Asymptotic integrability ”. In Symmetry and Perturbation Theory (SPT 98), Edited by:Degasperis, A., and Gaeta, G., 23–37. World Scientific, River Edge, NJ. Rome, December 1998
-
(1999)
Symmetry and Perturbation Theory (SPT 98)
, pp. 23-37
-
-
Degasperis, A.1
Procesi, M.2
-
14
-
-
0038170210
-
Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves
-
Dullin, H R, Gottwald, G A, and Holm, D D. 2003. Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dynam. Res, 33:73–95.
-
(2003)
Fluid Dynam. Res
, vol.33
, pp. 73-95
-
-
Dullin, H.R.1
Gottwald, G.A.2
Holm, D.D.3
-
15
-
-
49049150360
-
Symplectic structures, their Bäcklund transformation and hereditary symmetries
-
Fuchssteiner, B, and Fokas, A S. 1981. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D, 4:47–66.
-
(1981)
Phys. D
, vol.4
, pp. 47-66
-
-
Fuchssteiner, B.1
Fokas, A.S.2
-
17
-
-
0037171407
-
Camassa-Holm, Korteweg-de Vries and related models for water waves
-
Johnson, R S. 2002. Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech, 455:63–82.
-
(2002)
J. Fluid Mech
, vol.455
, pp. 63-82
-
-
Johnson, R.S.1
-
18
-
-
0003123140
-
Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations
-
Berlin: Springer-Verlag
-
Kato, T. 1975. “ Quasi-linear equations of evolution, with applications to partial differential equations, in:Spectral Theory and Differential Equations ”. In Lecture Notes in Math., Vol. 448, 25–70. Berlin:Springer-Verlag.
-
(1975)
Lecture Notes in Math.
, vol.448
, pp. 25-70
-
-
Kato, T.1
-
19
-
-
0036434830
-
The scattering approach for the Camassa-Holm equation
-
Lenells, J. 2002. The scattering approach for the Camassa-Holm equation. J. Nonlinear Math. Phys, 9:389–393.
-
(2002)
J. Nonlinear Math. Phys
, vol.9
, pp. 389-393
-
-
Lenells, J.1
-
20
-
-
0031989845
-
A shallow water equation as a geodesic flow on the Bott-Virasoro group
-
Misiolek, G. 1998. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys.,:203–208.
-
(1998)
J. Geom. Phys.
, pp. 203-208
-
-
Misiolek, G.1
-
22
-
-
17044435039
-
Blow-up phenomenon for the integrable Degasperis-Procesi equation
-
press
-
Zhou, Y. Blow-up phenomenon for the integrable Degasperis-Procesi equation. Phys. Lett. A, in press
-
Phys. Lett. A
-
-
Zhou, Y.1
-
23
-
-
3242666731
-
Global weak solutions for a new periodic integrable equation with peakon solutions
-
Yin, Z. 2004. Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal, 212:182–194.
-
(2004)
J. Funct. Anal
, vol.212
, pp. 182-194
-
-
Yin, Z.1
|